468 research outputs found

    Activity and electron donor preference of two denitrifying bacterial strains identified by Raman gas spectroscopy

    Get PDF
    Human activities have greatly increased the input of reactive nitrogen species into the environment and disturbed the balance of the global N cycle. This imbalance may be offset by bacterial denitrification, an important process in maintaining the ecological balance of nitrogen. However, our understanding of the activity of mixotrophic denitrifying bacteria is not complete, as most research has focused on heterotrophic denitrification. The aim of this study was to investigate substrate preferences for two mixotrophic denitrifying bacterial strains, Acidovorax delafieldii and Hydrogenophaga taeniospiralis, under heterotrophic, autotrophic or mixotrophic conditions. This complex analysis was achieved by simultaneous identification and quantification of H(2), O(2), CO(2), (14)N(2), (15)N(2) and (15)N(2)O in course of the denitrification process with help of cavity-enhanced Raman spectroscopic (CERS) multi-gas analysis. To disentangle electron donor preferences for both bacterial strains, microcosm-based incubation experiments under varying substrate conditions were conducted. We found that Acidovorax delafieldii preferentially performed heterotrophic denitrification in the mixotrophic sub-experiments, while Hydrogenophaga taeniospiralis preferred autotrophic denitrification in the mixotrophic incubation. These observations were supported by stoichiometric calculations. The results demonstrate the prowess of advanced Raman multi-gas analysis to study substrate use and electron donor preferences in denitrification, based on the comprehensive quantification of complex microbial gas exchange processes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00216-021-03541-y

    Morocco’s sustainable energy transition and the role of financing costs: a participatory electricity system modeling approach

    Get PDF
    Background Morocco is facing major challenges in terms of its future energy supply and demand. Specifically, the country is confronted with rising electricity demand, which in turn will lead to higher fossil fuel import dependency and carbon emissions. Recognizing these challenges, Morocco has set ambitious targets for the deployment of renewable energy sources for electricity generation (RES-E). The realization of these targets will lead to a fundamental transition of the Moroccan electricity sector and requires substantial public and private investment. However, different risks constitute barriers for private RES-E investments and lead to high financing costs, which may eventually discourage capital-intensive RES-E projects. Methodology While the existing literature has mainly focused on assessing the impact of financing costs on the economic competitiveness of individual technologies, the aim of this research is to assess the techno-economic feasibility of different electricity generation portfolios. To recognize the social dimension of the sustainable energy system transition, the electricity scenarios for Morocco have been jointly developed with stakeholders in a scenario building workshop in Rabat, employing a downscaled version of the open source electricity market model renpassG!S, augmented by a weighted average cost of capital (WACC) module. Results In the stakeholder workshop, four different electricity scenarios for Morocco were co-developed. Each of these scenarios describes a consensual and technologically feasible future development path for the Moroccan energy system up to 2050, and comprises conventional fossil fuel-based technologies, as well as RES-E technologies in varying shares. Employing the downscaled renpassG!S model, we find that total system costs, as well as average levelized costs of electricity (LCOE) can be reduced substantially with low-cost financing. Conclusions Our results indicate that de-risking RES-E investments can lead to cost competitiveness of a 100% RES-E-based electricity system with mixed-technology scenarios at marked financing costs. Therefore, we identify specific de-risking recommendations for Moroccan energy policymaking. In addition, we argue that participatory scenario modeling enables a better understanding of the risk perceptions of stakeholders, and can eventually contribute to increasing the political feasibility of sustainable energy transition pathways

    A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae (S. pneumoniae) infections are the leading cause of child mortality globally. Current vaccines fail to induce a protective immune response towards a conserved part of the pathogen, resulting in new serotypes causing disease. Therefore, new vaccine strategies are urgently needed. Described is a two-pronged approach combining S. pneumoniae proteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA), with a precisely defined synthetic oligosaccharide, whereby the carrier protein acts as a serotype-independent antigen to provide additional protection. Proof of concept in mice and swine models revealed that the conjugates inhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model. A combination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective (“universal”) pneumococcal vaccines

    High-E_T dijet photoproduction at HERA

    Get PDF
    The cross section for high-E_T dijet production in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb-1. The events were required to have a virtuality of the incoming photon, Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the range 142 < W < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to the parton distributions in the photon and proton and effects beyond next-to-leading order in QCD. Hence these data can be used to constrain further the parton densities in the proton and photon.Comment: 36 pages, 13 figures, 20 tables, including minor revisions from referees. Accepted by Phys. Rev.

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.

    Neuromatch Academy: Teaching Computational Neuroscience with Global Accessibility

    Get PDF
    Neuromatch Academy (NMA) designed and ran a fully online 3-week Computational Neuroscience Summer School for 1757 students with 191 teaching assistants (TAs) working in virtual inverted (or flipped) classrooms and on small group projects. Fourteen languages, active community management, and low cost allowed for an unprecedented level of inclusivity and universal accessibility

    Inclusive-jet Photoproduction at HERA and Determination of α \u3csub\u3es\u3c/sub\u3e

    Get PDF
    Inclusive-jet cross sections have been measured in the reaction ep→e+jet+X for photon virtuality Q 2γp centre-of-mass energies in the region 142γp-1. Jets were identified using the k T, anti-k T or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, ETjet, and pseudorapidity, jet, for jets with ETjet\u3e17 GeV and -1\u3c je

    Reconstruction of ancient microbial genomes from the human gut

    Get PDF
    Loss of gut microbial diversity1–6 in industrial populations is associated with chronic diseases7, underscoring the importance of studying our ancestral gut microbiome. However, relatively little is known about the composition of pre-industrial gut microbiomes. Here we performed a large-scale de novo assembly of microbial genomes from palaeofaeces. From eight authenticated human palaeofaeces samples (1,000–2,000 years old) with well-preserved DNA from southwestern USA and Mexico, we reconstructed 498 medium- and high-quality microbial genomes. Among the 181 genomes with the strongest evidence of being ancient and of human gut origin, 39% represent previously undescribed species-level genome bins. Tip dating suggests an approximate diversification timeline for the key human symbiont Methanobrevibacter smithii. In comparison to 789 present-day human gut microbiome samples from eight countries, the palaeofaeces samples are more similar to non-industrialized than industrialized human gut microbiomes. Functional profiling of the palaeofaeces samples reveals a markedly lower abundance of antibiotic-resistance and mucin-degrading genes, as well as enrichment of mobile genetic elements relative to industrial gut microbiomes. This study facilitates the discovery and characterization of previously undescribed gut microorganisms from ancient microbiomes and the investigation of the evolutionary history of the human gut microbiota through genome reconstruction from palaeofaeces.Ethics Overview of samples Reference-based taxonomic composition De novo genome reconstruction Methanobrevibacter smithii tip dating Functional genomic analysis Discussion Online content Method

    Search for First-generation Leptoquarks at HERA

    Get PDF
    A search for first-generation leptoquarks was performed in electron-proton and positron-proton collisions recorded with the ZEUS detector at HERA in 2003-2007 using an integrated luminosity of 366pb-1. Final states with an electron and jets or with missing transverse momentum and jets were analyzed, searching for resonances or other deviations from the standard model predictions. No evidence for any leptoquark signal was found. The data were combined with data previously taken at HERA, resulting in a total integrated luminosity of 498pb-1. Limits on the Yukawa coupling, λ, of leptoquarks were set as a function of the leptoquark mass for different leptoquark types within the Buchmüller-Rückl-Wyler model. Leptoquarks with a coupling λ=0.3 are excluded for masses up to 699 GeV. © 2012 American Physical Society

    Measurement of Inelastic J/ψ and ψ′ Photoproduction at HERA

    Get PDF
    The cross sections for inelastic photoproduction of J/ψ and ψ′ mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996-2007. The ψ′ to J/ψ cross section ratio was measured in the range 0.55 \u3c z \u3c 0.9 and 60 \u3c W \u3c 190 GeV as a function of W, z and pT. Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p T is the transverse momentum of the meson with respect to the beam axis. The J/ψ cross sections were measured for 0.1 \u3c z \u3c 0.9, 60 \u3c W \u3c 240 GeV and pT \u3e 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour-singlet and colour-octet contributions were compared to the data, as were predictions based on the k T-factorisation approach. © 2013 SISSA
    corecore