5,284 research outputs found
Nuclei in Strongly Magnetised Neutron Star Crusts
We discuss the ground state properties of matter in outer and inner crusts of
neutron stars under the influence of strong magnetic fields. In particular, we
demonstrate the effects of Landau quantization of electrons on compositions of
neutron star crusts. First we revisit the sequence of nuclei and the equation
of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS)
model in the presence of strong magnetic fields and most recent versions of the
theoretical and experimental nuclear mass tables. Next we deal with nuclei in
the inner crust. Nuclei which are arranged in a lattice, are immersed in a
nucleonic gas as well as a uniform background of electrons in the inner crust.
The Wigner-Seitz approximation is adopted in this calculation and each lattice
volume is replaced by a spherical cell. The coexistence of two phases of
nuclear matter - liquid and gas, is considered in this case. We obtain the
equilibrium nucleus corresponding to each baryon density by minimizing the free
energy of the cell. We perform this calculation using Skyrme nucleon-nucleon
interaction with different parameter sets. We find nuclei with larger mass and
charge numbers in the inner crust in the presence of strong magnetic fields
than those of the zero field case for all nucleon-nucleon interactions
considered here. However, SLy4 interaction has dramatic effects on the proton
fraction as well as masses and charges of nuclei. This may be attributed to the
behaviour of symmetry energy with density in the sub-saturation density regime.
Further we discuss the implications of our results to shear mode oscillations
of magnetars.Comment: presented in "Exciting Physics Symposium" held in Makutsi, South
Africa in November, 2011 and to be published in a book by Springer Verla
Developments in CLARA accelerator design and simulations
We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. Updates on the electron beam simulations and code comparisons including wakefields are described. Simulations of the effects of geometric wakefields in the small-aperture FEL undulator are shown, as well as further simulations on potential FEL experiments using chirped beams. We also present the results of simulations on post-FEL diagnostics
The developmental effects of media-ideal internalization and self-objectification processes on adolescents’ negative body-feelings, dietary restraint, and binge eating
Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., “internalizers” and “self-objectifiers”), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one’s body from an external observer’s standpoint (or self-objectification), which then predicted later negative emotional experiences related to one’s body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents’ feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed
Collapse of superconductivity in a hybrid tin-graphene Josephson junction array
When a Josephson junction array is built with hybrid
superconductor/metal/superconductor junctions, a quantum phase transition from
a superconducting to a two-dimensional (2D) metallic ground state is predicted
to happen upon increasing the junction normal state resistance. Owing to its
surface-exposed 2D electron gas and its gate-tunable charge carrier density,
graphene coupled to superconductors is the ideal platform to study the
above-mentioned transition between ground states. Here we show that decorating
graphene with a sparse and regular array of superconducting nanodisks enables
to continuously gate-tune the quantum superconductor-to-metal transition of the
Josephson junction array into a zero-temperature metallic state. The
suppression of proximity-induced superconductivity is a direct consequence of
the emergence of quantum fluctuations of the superconducting phase of the
disks. Under perpendicular magnetic field, the competition between quantum
fluctuations and disorder is responsible for the resilience at the lowest
temperatures of a superconducting glassy state that persists above the upper
critical field. Our results provide the entire phase diagram of the disorder
and magnetic field-tuned transition and unveil the fundamental impact of
quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure
GLAST: Understanding the High Energy Gamma-Ray Sky
We discuss the ability of the GLAST Large Area Telescope (LAT) to identify,
resolve, and study the high energy gamma-ray sky. Compared to previous
instruments the telescope will have greatly improved sensitivity and ability to
localize gamma-ray point sources. The ability to resolve the location and
identity of EGRET unidentified sources is described. We summarize the current
knowledge of the high energy gamma-ray sky and discuss the astrophysics of
known and some prospective classes of gamma-ray emitters. In addition, we also
describe the potential of GLAST to resolve old puzzles and to discover new
classes of sources.Comment: To appear in Cosmic Gamma Ray Sources, Kluwer ASSL Series, Edited by
K.S. Cheng and G.E. Romer
New insights into the genetic diversity of Schistosoma mansoni and S. haematobiumin Yemen
The file attached is the Published/publisher’s pdf version of the article.© 2015 Sady et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi
We report the detection of high-energy gamma-ray emission from two starburst
galaxies using data obtained with the Large Area Telescope on board the Fermi
Gamma-ray Space Telescope. Steady point-like emission above 200 MeV has been
detected at significance levels of 6.8 sigma and 4.8 sigma respectively, from
sources positionally coincident with locations of the starburst galaxies M82
and NGC 253. The total fluxes of the sources are consistent with gamma-ray
emission originating from the interaction of cosmic rays with local
interstellar gas and radiation fields and constitute evidence for a link
between massive star formation and gamma-ray emission in star-forming galaxies.Comment: Submitted to ApJ Letter
Onset of asymptotic scaling in deuteron photodisintegration
We investigate the transition from the nucleon-meson to quark-gluon
description of the strong interaction using the photon energy dependence of the
differential cross section for photon energies above 0.5 GeV and
center-of-mass proton angles between and . A possible
signature for this transition is the onset of cross section scaling
with the total energy squared, , at some proton transverse momentum, .
The results show that the scaling has been reached for proton transverse
momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime
is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
Fermi Gamma-ray Imaging of a Radio Galaxy
The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating
from the giant radio lobes of the radio galaxy Centaurus A. The resolved
gamma-ray image shows the lobes clearly separated from the central active
source. In contrast to all other active galaxies detected so far in high-energy
gamma-rays, the lobe flux constitutes a considerable portion (>1/2) of the
total source emission. The gamma-ray emission from the lobes is interpreted as
inverse Compton scattered relic radiation from the cosmic microwave background
(CMB), with additional contribution at higher energies from the
infrared-to-optical extragalactic background light (EBL). These measurements
provide gamma-ray constraints on the magnetic field and particle energy content
in radio galaxy lobes, and a promising method to probe the cosmic relic photon
fields.Comment: 27 pages, includes Supplementary Online Material; corresponding
authors: C.C. Cheung, Y. Fukazawa, J. Knodlseder, L. Stawar
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
- …
