149 research outputs found

    The association between muscular power from childhood to adulthood and adult measures of glucose homeostasis

    Get PDF
    This study aimed to assess whether the longitudinal association between childhood muscular fitness and adult measures of glucose homeostasis persist despite changes in muscular fitness across the life course. This prospective longitudinal study included 586 participants who had their muscular power (standing long jump distance), cardiorespiratory fitness (CRF), and waist circumference measured as children (aged 9, 12, 15 years) and again 20 years later as adults. In adulthood, these participants also provided a fasting blood sample which was tested for glucose and insulin. Glucose homeostasis measures including insulin resistance (HOMA2-IR) and beta cell function (HOMA2-β) were estimated. Child and adult muscular power levels were separated into thirds, and tracking groups (persistently low, decreasing, persistently moderate, increasing, and persistently high) were created. Sex-stratified multivariable linear regression models were used to examine the association between muscular power tracking groups and adult measures of glucose homeostasis. Compared with males with persistently high muscular power, males with increasing and persistently low muscular power had higher fasting insulin (increasing: β = 1.12 mU/L, P = .04; persistently low: β = 2.12 mU/L, P = .001) and HOMA2-β (increasing: β = 8.50%, P = .03; persistently low: β = 11.27%, P = .01) independent of CRF and males with persistently low muscular power had greater fasting insulin (β = 1.22 mU/L, P = .02) and HOMA2-IR (β = 0.14, P = .02) independent of waist circumference. Non-significant associations were present for females. For males, maintaining persistently high muscular power between childhood and adulthood could lead to a healthier adult glucose homeostasis profile

    The association between grip strength measured in childhood, young- and mid-adulthood and prediabetes or type 2 diabetes in mid-adulthood

    Get PDF
    Background: Although low child and adult grip strength is associated with adverse cardiometabolic health, how grip strength across the life course associates with type 2 diabetes is unknown. This study identified the relative contribution of grip strength measured at specific life stages (childhood, young adulthood, mid-adulthood) with prediabetes or type 2 diabetes in mid-adulthood. Methods: Between 1985 and 2019, 263 participants had their grip strength measured using an isometric dynamometer in childhood (9-15 years), young adulthood (28-36 years) and mid-adulthood (38-49 years). In mid-adulthood, a fasting blood sample was collected and tested for glucose and glycated haemoglobin (HbA1c). Participants were categorized as having prediabetes or type 2 diabetes if fasting glucose levels were ≥ 5.6 mmol or if HbA1c levels were ≥ 5.7% (≥ 39 mmol/mol). A Bayesian relevant life course exposure model examined the association between lifelong grip strength and prediabetes or type 2 diabetes. Results: Grip strength at each time point was equally associated with prediabetes or type 2 diabetes in mid-adulthood (childhood: 37%, young adulthood: 36%, mid-adulthood: 28%). A one standard deviation increase in cumulative grip strength was associated with 34% reduced odds of prediabetes or type 2 diabetes in mid-adulthood (OR 0.66, 95% credible interval 0.40, 0.98). Conclusions: Greater grip strength across the life course could protect against the development of prediabetes and type 2 diabetes. Strategies aimed at increasing muscular strength in childhood and maintaining behaviours to improve strength into adulthood could improve future cardiometabolic health. The Association Between Grip Strength Measured in Childhood, Young- and Mid-adulthood and Prediabetes or Type 2 Diabetes in Mid-adulthood

    The association between muscular power from childhood to adulthood and adult measures of glucose homeostasis

    Get PDF
    This study aimed to assess whether the longitudinal association between childhood muscular fitness and adult measures of glucose homeostasis persist despite changes in muscular fitness across the life course. This prospective longitudinal study included 586 participants who had their muscular power (standing long jump distance), cardiorespiratory fitness (CRF), and waist circumference measured as children (aged 9, 12, 15 years) and again 20 years later as adults. In adulthood, these participants also provided a fasting blood sample which was tested for glucose and insulin. Glucose homeostasis measures including insulin resistance (HOMA2-IR) and beta cell function (HOMA2-beta) were estimated. Child and adult muscular power levels were separated into thirds, and tracking groups (persistently low, decreasing, persistently moderate, increasing, and persistently high) were created. Sex-stratified multivariable linear regression models were used to examine the association between muscular power tracking groups and adult measures of glucose homeostasis. Compared with males with persistently high muscular power, males with increasing and persistently low muscular power had higher fasting insulin (increasing: beta = 1.12 mU/L, P = .04; persistently low: beta = 2.12 mU/L, P = .001) and HOMA2-beta (increasing: beta = 8.50%, P = .03; persistently low: beta = 11.27%, P = .01) independent of CRF and males with persistently low muscular power had greater fasting insulin (beta = 1.22 mU/L, P = .02) and HOMA2-IR (beta = 0.14, P = .02) independent of waist circumference. Non-significant associations were present for females. For males, maintaining persistently high muscular power between childhood and adulthood could lead to a healthier adult glucose homeostasis profile

    Factors associated with persistently high muscular power from childhood to adulthood

    Get PDF
    Purpose: Child and adult muscular power have been shown to associate with contemporary cardiometabolic health. Muscular power typically persists (tracks) between childhood and adulthood. Few studies span childhood to adulthood, so we aimed to identify modifiable and environmental factors associated with the persistence or change in muscular power across the life course.Methods: Prospective study examining 1938 participants who had their muscular power (standing long jump distance) measured in 1985 as children 7-15 yr old and again 20 yr later in adulthood (26-36 yr old). A selection of objectively measured anthropometric characteristics (adiposity and fat-free mass), cardiorespiratory fitness (CRF), self-reported physical activity, dietary (quality and fruit, vegetable, and protein intake), and sociodemographic data were available at both time points. Muscular power was separated into thirds, and participants were reported as having persistently low, decreasing, persistently moderate, increasing, or persistently high muscular power.Results: Higher adiposity, lower physical activity, diet quality and socioeconomic status (SES) across the life course, and lower adult CRF were associated with persistently low muscular power. Lower adult protein intake and an increase in adiposity over time were associated with decreasing muscular power. An increase in fat-free mass was associated with a reduced probability of decreasing or persistently high muscular power and an increased probability of increasing muscular power. Higher adult fruit intake was associated with increasing muscular power. Lower adiposity across the life course, higher adult CRF and SES, and higher child protein intake were associated with persistently high muscular power.Conclusion: Healthy weight, good CRF, greater protein intake, and high SES are important correlates of high muscular power maintained from childhood to adulthood

    Equivalent glycemic load (EGL): a method for quantifying the glycemic responses elicited by low carbohydrate foods

    Get PDF
    BACKGROUND: Glycemic load (GL) is used to quantify the glycemic impact of high-carbohydrate (CHO) foods, but cannot be used for low-CHO foods. Therefore, we evaluated the accuracy of equivalent-glycemic-load (EGL), a measure of the glycemic impact of low-CHO foods defined as the amount of CHO from white-bread (WB) with the same glycemic impact as one serving of food. METHODS: Several randomized, cross-over trials were performed by a contract research organization using overnight-fasted healthy subjects drawn from a pool of 63 recruited from the general population by newspaper advertisement. Incremental blood-glucose response area-under-the-curve (AUC) elicited by 0, 5, 10, 20, 35 and 50 g CHO portions of WB (WB-CHO) and 3, 5, 10 and 20 g glucose were measured. EGL values of the different doses of glucose and WB and 4 low-CHO foods were determined as: EGL = (F-B)/M, where F is AUC after food and B is y-intercept and M slope of the regression of AUC on grams WB-CHO. The dose-response curves of WB and glucose were used to derive an equation to estimate GL from EGL, and the resulting values compared to GL calculated from the glucose dose-response curve. The accuracy of EGL was assessed by comparing the GL (estimated from EGL) values of the 4 doses of oral-glucose with the amounts actually consumed. RESULTS: Over 0–50 g WB-CHO (n = 10), the dose-response curve was non-linear, but over the range 0–20 g the curve was indistinguishable from linear, with AUC after 0, 5, 10 and 20 g WB-CHO, 10 ± 1, 28 ± 2, 58 ± 5 and 100 ± 6 mmol × min/L, differing significantly from each other (n = 48). The difference between GL values estimated from EGL and those calculated from the dose-response curve was 0 g (95% confidence-interval, ± 0.5 g). The difference between the GL values of the 4 doses of glucose estimated from EGL, and the amounts of glucose actually consumed was 0.2 g (95% confidence-interval, ± 1 g). CONCLUSION: EGL, a measure of the glycemic impact of low-carbohydrate foods, is valid across the range of 0–20 g CHO, accurate to within 1 g, and at least sensitive enough to detect a glycemic response equivalent to that produced by 3 g oral-glucose in 10 subjects

    Strong microsite control of seedling recruitment in tundra

    Get PDF
    The inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental gradient in dry tundra. A survey of natural seed rain and seedling density in vegetation was combined with observations of the establishment of 14 species after sowing into intact or disturbed vegetation. Although seed rain density was closely correlated with natural seedling establishment, the experimental seed addition showed that the microsite environment was even more important. For all species, seedling emergence peaked at the productive end of the gradient, irrespective of the adult niches realized. Disturbance promoted recruitment at all positions along the environmental gradient, not just at high productivity. Early seedling emergence constituted the main temporal bottleneck in recruitment for all species. Surprisingly, winter mortality was highest at what appeared to be the most benign end of the gradient. The results highlight that seedling recruitment patterns are largely determined by the earliest stages in seedling emergence, which again are closely linked to microsite quality. A fuller understanding of microsite effects on recruitment with implications for plant community assembly and vegetation change is provided

    Workplace Health Promotion and Mental Health: Three-Year Findings from Partnering Healthy@Work

    Get PDF
    This study aimed to investigate the association between mental health and comprehensive workplace health promotion (WHP) delivered to an entire state public service workforce (~28,000 employees) over a three-year period. Government departments in a state public service were supported to design and deliver a comprehensive, multi-component health promotion program, Healthy@Work, which targeted modifiable health risks including unhealthy lifestyles and stress. Repeated cross-sectional surveys compared self-reported psychological distress (Kessler-10; K10) at commencement (N = 3406) and after 3 years (N = 3228). WHP availability and participation over time was assessed, and associations between the K10 and exposure to programs estimated. Analyses were repeated for a cohort subgroup (N = 580). Data were weighted for non-response. Participation in any mental health and lifestyle programs approximately doubled after 3 years. Both male and female employees with poorer mental health participated more often over time. Women's psychological distress decreased over time but this change was only partially attributable to participation in WHP, and only to lifestyle interventions. Average psychological distress did not change over time for men. Unexpectedly, program components directly targeting mental health were not associated with distress for either men or women. Cohort results corroborated findings. Healthy@Work was successful in increasing participation across a range of program types, including for men and women with poorer mental health. A small positive association of participation in lifestyle programs with mental health was observed for women but not men. The lack of association of mental health programs may have reflected program quality, its universality of application or other contextual factors

    Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells.</p> <p>Methods</p> <p>The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses.</p> <p>Results</p> <p>Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in <it>in vitro </it>assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic targets, may reflect a positive mediation of ovarian cancer growth.</p> <p>Conclusion</p> <p>Overall, the present study elucidates the extensive transcriptomic changes of ovarian cancer cells in response to LH receptor activation, which provides a comprehensive and objective assessment for determining new cancer therapies and potential serum markers, of which over 100 are suggested.</p

    Preliminary Evidence for Cell Membrane Amelioration in Children with Cystic Fibrosis by 5-MTHF and Vitamin B12 Supplementation: A Single Arm Trial

    Get PDF
    Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis.A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K(+) content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association.5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF.ClinicalTrials.gov NCT00730509

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore