399 research outputs found

    Mutation detection by analysis of DNA heteroduplexes in TILLING populations of diploid species

    Get PDF
    In the beginning of mutation research, mutations could only be detected indirectly through the analysis of the phenotypic alterations that they caused. The detection of mutations at the DNA level became possible with the development of sequencing methods. Nowadays, there are many different methods and strategies that have been created for mutation detection, both in natural and mutagenised populations. The strategies differ in accuracy and sensitivity, as well as in the laboratory facilities, time, costs and efforts that are required. The majority of them involve the pooling of DNA samples and the amplification of a gene (fragment) of interest followed by heteroduplex formation. One of the popular strategies for mutation identification takes advantage of the specific endonuclease (e.g. CEL I) that recognises and cuts heteroduplexes precisely at the 3′ position of the mismatch site. The cleaved fragments are usually visualised through electrophoresis in a polyacrylamide gel using LI-COR sequencers, but agarose electrophoresis may also be used for this purpose, although with less sensitivity. A different mutation identification strategy, which is based on the high-resolution melting (HRM) technique, may be the method of choice when working with a short gene or a gene fragment whose length optimally does not exceed 400 bp

    No evidence for cardiac dysfunction in Kif6 mutant mice.

    Get PDF
    A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction. No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function

    Watching TV news as a memory task -- brain activation and age effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroimaging studies which investigate brain activity underlying declarative memory processes typically use artificial, unimodal laboratory stimuli. In contrast, we developed a paradigm which much more closely approximates real-life situations of information encoding.</p> <p>Methods</p> <p>In this study, we tested whether ecologically valid stimuli - clips of a TV news show - are apt to assess memory-related fMRI activation in healthy participants across a wide age range (22-70 years). We contrasted brain responses during natural stimulation (TV news video clips) with a control condition (scrambled versions of the same clips with reversed audio tracks). After scanning, free recall performance was assessed.</p> <p>Results</p> <p>The memory task evoked robust activation of a left-lateralized network, including primarily lateral temporal cortex, frontal cortex, as well as the left hippocampus. Further analyses revealed that - when controlling for performance effects - older age was associated with greater activation of left temporal and right frontal cortex.</p> <p>Conclusion</p> <p>We demonstrate the feasibility of assessing brain activity underlying declarative memory using a natural stimulation paradigm with high ecological validity. The preliminary result of greater brain activation with increasing age might reflect an attempt to compensate for decreasing episodic memory capacity associated with aging.</p

    A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching

    Full text link
    The “hierarchical model” proposed earlier [Larson in Macromolecules 34:4556–4571, 2001] is herein modified by inclusion of early time fluctuations and other refinements drawn from the theories of Milner and McLeish for more quantitative prediction. The hierarchical model predictions are then compared with experimental linear viscoelastic data of well-defined long chain branched 1,4-polybutadienes and 1,4-polyisoprenes using a single set of parameter values for each polymer, which are obtained from experimental data for monodisperse linear and star polymers. For a wide range of monodisperse branched polymer melts, the predictions of the hierarchical model for monodisperse melts are very similar to those of the Milner–McLeish theories, and agree well with experimental data for many, but not all, of the branched polymer samples. Since the modified hierarchical model accounts for arbitrary polydispersity in molecular weight and branching distributions, which is not accounted for in the Milner–McLeish theories, the hierarchical algorithm is a promising one for predicting the relaxation of general mixtures of branched polymers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47217/1/397_2004_Article_415.pd

    Mining protein loops using a structural alphabet and statistical exceptionality

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein loops encompass 50% of protein residues in available three-dimensional structures. These regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied.</p> <p>Results</p> <p>We developed a simple and accurate method that allows the description and analysis of the structures of short and long loops using structural motifs without restriction on loop length. This method is based on the structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such word. We complement our analysis with the detection of statistically over-represented patterns of structural letters as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential specificity, suggesting structural or functional constraints.</p> <p>Conclusions</p> <p>We developed a method to systematically decompose and study protein loops using recurrent structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops. This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop analysis. Detailed results are available at <url>http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/ACCLoop/</url>.</p

    The Cost of Male Aggression and Polygyny in California Sea Lions (Zalophus californianus)

    Get PDF
    In polygynous mating systems, males often increase their fecundity via aggressive defense of mates and/or resources necessary for successful mating. Here we show that both male and female reproductive behavior during the breeding season (June–August) affect female fecundity, a vital rate that is an important determinant of population growth rate and viability. By using 4 years of data on behavior and demography of California sea lions (Zalophus californianus), we found that male behavior and spatial dynamics—aggression and territory size—are significantly related to female fecundity. Higher rates of male aggression and larger territory sizes were associated with lower estimates of female fecundity within the same year. Female aggression was significantly and positively related to fecundity both within the same year as the behavior was measured and in the following year. These results indicate that while male aggression and defense of territories may increase male fecundity, such interactions may cause a reduction in the overall population growth rate by lowering female fecundity. Females may attempt to offset male-related reductions in female fecundity by increasing their own aggression—perhaps to defend pups from incidental injury or mortality. Thus in polygynous mating systems, male aggression may increase male fitness at the cost of female fitness and overall population viability

    Adoptive T-cell therapy improves treatment of canine non–Hodgkin lymphoma post chemotherapy

    Get PDF
    Clinical observations reveal that an augmented pace of T-cell recovery after chemotherapy correlates with improved tumor-free survival, suggesting the add-back of T cells after chemotherapy may improve outcomes. To evaluate adoptive immunotherapy treatment for B-lineage non-Hodgkin lymphoma (NHL), we expanded T cells from client-owned canines diagnosed with NHL on artificial antigen presenting cells (aAPC) in the presence of human interleukin (IL)-2 and IL-21. Graded doses of autologous T cells were infused after CHOP chemotherapy and persisted for 49 days, homed to tumor, and significantly improved survival. Serum thymidine kinase changes predicted T-cell engraftment, while anti-tumor effects correlated with neutrophil-to-lymphocyte ratios and granzyme B expression in manufactured T cells. Therefore, chemotherapy can be used to modulate infused T-cell responses to enhance anti-tumor effects. The companion canine model has translational implications for human immunotherapy which can be readily exploited since clinical-grade canine and human T cells are propagated using identical approaches

    Vitamin D status is inversely associated with markers of risk for type 2 diabetes: A population based study in Victoria, Australia

    Get PDF
    A growing body of evidence suggests a protective role of Vitamin D on the risk of type 2 diabetes mellitus (T2DM). We investigated this relationship in a population sample from one Australian state. The data of 3,393 Australian adults aged 18±75 years who participated in the 2009±2010 Victorian Health Monitor survey was analyzed. Socio-demographic information, biomedical variables, and dietary intakes were collected and fasting blood samples were analyzed for 25, hydroxycholecalciferol (25OHD), HbA1c, fasting plasma glucose (FPG), and lipid profiles. Logistic regression analyses were used to evaluate the association between tertiles of serum 25OHD and categories of FPG (&lt;5.6 mmol/L vs. 5.6±6.9 mmol/L), and HbA1c (&lt;5.7% vs. 5.7±6.4%). After adjusting for social, dietary, biomedical and metabolic syndrome (MetS) components (waist circumference, HDL cholesterol, triglycerides, and blood pressure), every 10 nmol/L increment in serum 25OHD significantly reduced the adjusted odds ratio (AOR) of a higher FPG [AOR 0.91, (0.86, 0.97); p = 0.002] and a higher HbA1c [AOR 0.94, (0.90, 0.98); p = 0.009]. Analysis by tertiles of 25OHD indicated that after adjustment for socio-demographic and dietary variables, those with high 25OHD (65±204 nmol/L) had reduced odds of a higher FPG [AOR 0.60, (0.43, 0.83); p = 0.008] as well as higher HbA1c [AOR 0.67, (0.53, 0.85); p = 0.005] compared to the lowest 25OHD (10±44 nmol/L) tertile. On final adjustment for other components of MetS, those in the highest tertile of 25OHD had significantly reduced odds of higher FPG [AOR 0.61, (0.44, 0.84); p = 0.011] and of higher HbA1c [AOR 0.74, (0.58, 0.93); p = 0.041] vs. low 25OHD tertile. Overall, the data support a direct, protective effect of higher 25OHD on FPG and HbA1c; two criteria for assessment of risk of T2DM

    Role of Porphyromonas gingivalis gingipains in multi-species biofilm formation

    Get PDF
    BackgroundPeriodontal diseases are polymicrobial diseases that cause the inflammatory destruction of the tooth-supporting (periodontal) tissues. Their initiation is attributed to the formation of subgingival biofilms that stimulate a cascade of chronic inflammatory reactions by the affected tissue. The Gram-negative anaerobes Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola are commonly found as part of the microbiota of subgingival biofilms, and they are associated with the occurrence and severity of the disease. P. gingivalis expresses several virulence factors that may support its survival, regulate its communication with other species in the biofilm, or modulate the inflammatory response of the colonized host tissue. The most prominent of these virulence factors are the gingipains, which are a set of cysteine proteinases (either Arg-specific or Lys-specific). The role of gingipains in the biofilm-forming capacity of P. gingivalis is barely investigated. Hence, this in vitro study employed a biofilm model consisting of 10 ¿subgingival¿ bacterial species, incorporating either a wild-type P. gingivalis strain or its derivative Lys-gingipain and Arg-gingipan isogenic mutants, in order to evaluate quantitative and qualitative changes in biofilm composition.ResultsFollowing 64 h of biofilm growth, the levels of all 10 species were quantified by fluorescence in situ hybridization or immunofluorescence. The wild-type and the two gingipain-deficient P. gingivalis strains exhibited similar growth in their corresponding biofilms. Among the remaining nine species, only the numbers of T. forsythia were significantly reduced, and only when the Lys-gingipain mutant was present in the biofilm. When evaluating the structure of the biofilm by confocal laser scanning microscopy, the most prominent observation was a shift in the spatial arrangement of T. denticola, in the presence of P. gingivalis Arg-gingipain mutant.ConclusionsThe gingipains of P. gingivalis may qualitatively and quantitatively affect composition of polymicrobial biofilms. The present experimental model reveals interdependency between the gingipains of P. gingivalis and T. forsythia or T. denticola

    Grasping isoluminant stimuli

    Get PDF
    We used a virtual reality setup to let participants grasp discs, which differed in luminance, chromaticity and size. Current theories on perception and action propose a division of labor in the brain into a color proficient perception pathway and a less color-capable action pathway. In this study, we addressed the question whether isoluminant stimuli, which provide only a chromatic but no luminance contrast for action planning, are harder to grasp than stimuli providing luminance contrast or both kinds of contrast. Although we found that grasps of isoluminant stimuli had a slightly steeper slope relating the maximum grip aperture to disc size, all other measures of grip quality were unaffected. Overall, our results do not support the view that isoluminance of stimulus and background impedes the planning of a grasping movement
    corecore