3,910 research outputs found

    Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds

    Full text link
    A new representation, which does not contain the third-order derivatives of the coordinates, of the exact Mathisson-Papapetrou-Dixon equations, describing the motion of a spinning test particle, is obtained under the assumption of the Mathisson-Pirani condition in a Kerr background. For this purpose the integrals of energy and angular momentum of the spinning particle as well as a differential relationship following from the Mathisson-Papapetrou-Dixon equations are used. The form of these equations is adapted for their computer integration with the aim to investigate the influence of the spin-curvature interaction on the particle's behavior in the gravitational field without restrictions on its velocity and spin orientation. Some numerical examples for a Schwarzschild background are presented.Comment: 21 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1105.240

    Gravitomagnetism and Relative Observer Clock Effects

    Get PDF
    The gravitomagnetic clock effect and the Sagnac effect for circularly rotating orbits in stationary axisymmetric spacetimes are studied from a relative observer point of view, clarifying their relationships and the roles played by special observer families. In particular Semer\'ak's recent characterization of extremely accelerated observers in terms of the two-clock clock effect is shown to be complemented by a similarly special property of the single-clock clock effect.Comment: 19 pages, LaTeX, IOP macros with package epsf and 1 eps figure, to appear in Classical and Quantum Gravity, slight revisio

    A Statistical Mechanical Problem in Schwarzschild Spacetime

    Full text link
    We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.Comment: Corrected an equation misprint, added four references, and brief comments on the system's center of mass and the thermodynamic limi

    Predictors of severe hyperbiliruniaemia in HIV-infected patients treated with atazanavir (ATV)

    Get PDF
    Methods HIV-infected subjects on ATV/ritonavir containing stable HAART regimen were included. ATV plasma concentrations were measured 24 hours after the last dose by HPLC with UV detector. Polymorphism at the uridin-glocoronosyl-transferase 1A1 (UGT1A1) was examined in DNA extracted from blood mononuclear cells, to identify subjects with Gilbert's syndrome. The correlation between bilirubin plasma levels, ATV concentration and polymorphism of UGT1A1 (defined as the presence than at least one TA7 allele) were evaluated by multivariate linear regression (other covariates included: gender, age, CD4 count, months of ATV exposure). Predictors of severe hyperbilirubinemia (>2.5 ÎĽmol/l; grade 3) were evaluated by multivariate logistic regression (polymorphism at UGT1A1, Cmin, BMI, age included as covariates)

    Gravito-electromagnetic analogies

    Full text link
    We reexamine and further develop different gravito-electromagnetic (GEM) analogies found in the literature, and clarify the connection between them. Special emphasis is placed in two exact physical analogies: the analogy based on inertial fields from the so-called "1+3 formalism", and the analogy based on tidal tensors. Both are reformulated, extended and generalized. We write in both formalisms the Maxwell and the full exact Einstein field equations with sources, plus the algebraic Bianchi identities, which are cast as the source-free equations for the gravitational field. New results within each approach are unveiled. The well known analogy between linearized gravity and electromagnetism in Lorentz frames is obtained as a limiting case of the exact ones. The formal analogies between the Maxwell and Weyl tensors are also discussed, and, together with insight from the other approaches, used to physically interpret gravitational radiation. The precise conditions under which a similarity between gravity and electromagnetism occurs are discussed, and we conclude by summarizing the main outcome of each approach.Comment: 60 pages, 2 figures. Improved version (compared to v2) with some re-write, notation improvements and a new figure that match the published version; expanded compared to the published version to include Secs. 2.3 and

    Charged particle decay of hot and rotating 88^{88}Mo nuclei in fusion-evaporation reactions

    Get PDF
    A study of fusion-evaporation and (partly) fusion-fission channels for the 88^{88}Mo compound nucleus, produced at different excitation energies in the reaction 48^{48}Ti + 40^{40}Ca at 300, 450 and 600 MeV beam energies, is presented. Fusion-evaporation and fusion-fission cross sections have been extracted and compared with the existing systematics. Experimental data concerning light charged particles have been compared with the prediction of the statistical model in its implementation in the Gemini++ code, well suited even for high spin systems, in order to tune the main model parameters in a mass region not abundantly covered by exclusive experimental data. Multiplicities for light charged particles emitted in fusion evaporation events are also presented. Some discrepancies with respect to the prediction of the statistical model have been found for forward emitted α\alpha-particles; they may be due both to pre-equilibrium emission and to reaction channels (such as Deep Inelastic Collisions, QuasiFission/QuasiFusion) different from the compound nucleus formation.Comment: 14 pages, 14 figure

    Isospin transport in 84Kr + 112,124Sn collisions at Fermi energies

    Full text link
    Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor (112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the n-richness of the target and it is a direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.Comment: 8 pages, 7 figure

    N and Z odd-even staggering in Kr + Sn collisions at Fermi energies

    Full text link
    The odd-even staggering of the yield of final reaction products has been studied as a function of proton (Z) and neutron (N) numbers for the collisions 84 Kr+112 Sn and 84 Kr+124 Sn at 35 MeV/nucleon, in a wide range of elements (up to Z ~ 20). The experimental data show that staggering effects rapidly decrease with increasing size of the fragments. Moreover the staggering in N is definitely larger than the one in Z. Similar general features are qualitatively reproduced by the GEMINI code. Concerning the comparison of the two systems, the staggering in N is in general rather similar, being slightly larger only for the lightest fragments produced in the n-rich system. In contrast the staggering in Z, although smaller than that in N, is sizably larger for the n-poor system with respect to the n-rich one.Comment: 6 pages, 5 figures, Revtex forma

    Focusing of high-brightness electron beams with active-plasma lenses

    Get PDF
    Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices
    • …
    corecore