1,591 research outputs found

    Opportunities of Optical Spectrum for Future Wireless Communications

    Full text link
    The requirements in terms of service quality such as data rate, latency, power consumption, number of connectivity of future fifth-generation (5G) communication is very high. Moreover, in Internet of Things (IoT) requires massive connectivity. Optical wireless communication (OWC) technologies such as visible light communication, light fidelity, optical camera communication, and free space optical communication can effectively serve for the successful deployment of 5G and IoT. This paper clearly presents the contributions of OWC networks for 5G and IoT solutions.Comment: 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC

    Expression of HSP70 and Its Relation with Other Cytokines in Human Middle Ear Effusion

    Get PDF
    ObjectivesWhile other cytokines are known to be associated with otitis media with effusion (OME), the involvement of heat shock protein 70 (HSP70) in middle ear effusion (MEE) is unknown. This study was undertaken to investigate the possibility of there being a HSP70 expression in human MEE and to determine its potential role as a cytokine in OME.MethodsThe levels of HSP70, tumor necrosis factor-alpha and interleukin-1beta were measured by enzyme-linked immunosorbent assay in the effusion of different groups of OME patient following collection of the MEE using our new collection system. The clinical characteristics of the OME patients and the MEE status were analyzed.ResultsHSP70 was expressed in all the types of MEE. The mucous and seromucous effusions showed higher HSP70 levels than that of the serous effusion. The HSP70 level was correlated with the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the effusions. The positive correlations between HSP70, TNF-α and IL-1β were statistically significant (P<0.05).ConclusionThe highly elevated level of HSP70 in the seromucous and mucous effusions implicates this protein in the chronicity of OME

    The Cell Shape-determining Csd6 Protein from Helicobacter pylori Constitutes a New Family of L,D-Carboxypeptidase

    Get PDF
    Helicobacter pylori causes gastrointestinal diseases, including gastric cancer. Its high motility in the viscous gastric mucosa facilitates colonization of the human stomach and depends on the helical cell shape and the flagella. In H. pylori, Csd6 is one of the cell shape-determining proteins that play key roles in alteration of cross-linking or by trimming of peptidoglycan muropeptides. Csd6 is also involved in deglycosylation of the flagellar protein FlaA. To better understand its function, biochemical, biophysical, and structural characterizations were carried out. We show that Csd6 has a three-domain architecture and exists as a dimer in solution. The N-terminal domain plays a key role in dimerization. The middle catalytic domain resembles those of L,D-transpeptidases, but its pocket-shaped active site is uniquely defined by the four loops I to IV, among which loops I and III show the most distinct variations from the known L,D-transpeptidases. Mass analyses confirm that Csd6 functions only as an L,D-carboxypeptidase and not as an L,D-transpeptidase. The D-Ala-complexed structure suggests possible binding modes of both the substrate and product to the catalytic domain. The C-terminal nuclear transport factor 2-like domain possesses a deep pocket for possible binding of pseudaminic acid, and in silico docking supports its role in deglycosylation of flagellin. On the basis of these findings, it is proposed that H. pylori Csd6 and its homologs constitute a new family of L,D-carboxypeptidase. This work provides insights into the function of Csd6 in regulating the helical cell shape and motility of H. pylori.1165Ysciescopu

    Redirecting an Anticancer to an Antibacterial Hit Against Methicillin-Resistant Staphylococcus aureus

    Get PDF
    YM155 is a clinically evaluated anticancer with a fused naphthoquinone-imidazolium scaffold. In this study, we demonstrated that based on weak or cryptic antibacterial activity of YM155 against methicillin-resistant Staphylococcus aureus (MRSA) (MIC of 50 μg/ml), some congeneric compounds with short alkyl chains (e.g., c5 with a hexyl chain) at the N3 position of the scaffold, displayed more potent antibacterial activity against MRSA (MIC of 3.13 μg/ml), which is in a clinically achievable range. Their antibacterial activity was evident against Gram-negative bacteria, only in the presence of the outer membrane-permeabilizing agent, polymyxin B. The antibacterial efficacy of c5 was confirmed using the Drosophila systemic infection model. We also characterized five spontaneous c5-resistant MRSA mutants that carry mutations in the ubiE gene, for quinone metabolism and respiratory electron transfer, and subsequently exhibited reduced respiration activity. The antibacterial activity of c5 was compromised either by an antioxidant, N-acetylcysteine, or in an anaerobic condition. These suggest that the antibacterial mechanism of c5 involves the generation of reactive oxygen species (ROS), presumably during respiratory electron transport. This study provides an insight into “drug redirecting,” through a chemical modification, based on an ROS-generating pharmacophore

    Engineering gold nanotubes with controlled length and near-infrared absorption for theranostic applications

    Get PDF
    Important aspects in engineering gold nanoparticles for theranostic applications include the control of size, optical properties, cytotoxicity, biodistribution, and clearance. In this study, gold nanotubes with controlled length and tunable absorption in the near-infrared (NIR) region have been exploited for applications as photothermal conversion agents and in vivo photoacoustic imaging contrast agents. A length-controlled synthesis has been developed to fabricate gold nanotubes (NTs) with well-defined shape (i.e., inner void and open ends), high crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4-styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. The PSS-coated Au NTs have the following characteristics: i) cellular uptake by colorectal cancer cells and macrophage cells, ii) photothermal ablation of cancer cells using single wavelength pulse laser irradiation, iii) excellent in vivo photoacoustic signal generation capability and accumulation at the tumor site, iv) hepatobiliary clearance within 72 h postintravenous injection. These results demonstrate that these PSS-coated Au NTs have the ideal attributes to develop their potential as effective and safe in vivo imaging nanoprobes, photothermal conversion agents, and drug delivery vehicles. To the best of knowledge, this is the first in vitro and in vivo study of gold nanotubes

    Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

    Get PDF
    Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis

    Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials

    Full text link
    Ni(OH)2 nanocrystals grown on graphene sheets with various degrees of oxidation are investigated as electrochemical pseudocapacitor materials for potential energy storage applications. Single-crystalline Ni(OH)2 hexagonal nanoplates directly grown on lightly-oxidized, electrically-conducting graphene sheets (GS) exhibit a high specific capacitance of ~1335F/g at a charge and discharge current density of 2.8A/g and ~953F/g at 45.7A/g with excellent cycling ability. The high specific capacitance and remarkable rate capability are promising for applications in supercapacitors with both high energy and power densities. Simple physical mixture of pre-synthesized Ni(OH)2 nanoplates and graphene sheets show lower specific capacitance, highlighting the importance of direct growth of nanomaterials on graphene to impart intimate interactions and efficient charge transport between the active nanomaterials and the conducting graphene network. Single-crystalline Ni(OH)2 nanoplates directly grown on graphene sheets also significantly outperform small Ni(OH)2 nanoparticles grown on heavily-oxidized, electrically-insulating graphite oxide (GO), suggesting that the electrochemical performance of these composites are dependent on the quality of graphene substrates and the morphology and crystallinity of the nanomaterials grown on top. These results suggest the importance of rational design and synthesis of graphene-based nanocomposite materials for high-performance energy applications.Comment: Published in JAC

    Lipocalin 2 modulates the cellular response to amyloid beta

    Get PDF
    The production, accumulation and aggregation of amyloid beta (Aß) peptides in Alzheimer's disease (AD) are influenced by different modulators. Among these are iron and iron-related proteins, given their ability to modulate the expression of the amyloid precursor protein and to drive Aß aggregation. Herein, we describe that lipocalin 2 (LCN2), a mammalian acute-phase protein involved in iron homeostasis, is highly produced in response to Aß1-42 by choroid plexus epithelial cells and astrocytes, but not by microglia or neurons. Although Aß1-42 stimulation decreases the dehydrogenase activity and survival of wild-type astrocytes, astrocytes lacking the expression of Lcn2 are not affected. This protection results from a lower expression of the proapoptotic gene Bim and a decreased inflammatory response. Altogether, these findings show that Aß toxicity to astrocytes requires LCN2, which represents a novel mechanism to target when addressing AD.Cell Death and Differentiation advance online publication, 23 May 2014; doi:10.1038/cdd.2014.68.We thank Dr. Ioannis Sotiropoulos for reagents and comments. Sandro Da Mesquita and Ana Catarina Ferreira are recipients of PhD fellowships and Fernanda Marques is recipient of a postdoctoral fellowship by the Fundacao para a Ciencia e Tecnologia (FCT, Portugal)/FEDER. This work was supported by a grant from FCT/FEDER (EXPL/NEUOSD/2196/2013)
    corecore