170 research outputs found

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    Quantification of crypt and stem cell evolution in the normal and neoplastic human colon.

    Get PDF
    Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a "functional" stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC(-/+)). Furthermore, we show that, in adenomatous crypts (APC(-/-)), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30-40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.This study was supported by Cancer Research UK (to A.-M.B. and N.A.W.), the Medical Research Council (to B.C. and S.A.C.M.), the Engineering and Physical Sciences Research Council (to A.G.F.), Microsoft Research (to A.G.F.), the National Institute for Health Research University College London Hospitals Biomedical Research Centre (to M.R.J.), the Dutch Cancer Research Foundation (to M.J.), the Wellcome Trust (to B.D.S.), and Higher Education Funding Council for England (to T.A.G.)

    Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation

    Get PDF
    The force-dependent interaction between talin and vinculin plays a crucial role in the initiation and growth of focal adhesions. Here we use magnetic tweezers to characterise the mechano-sensitive compact N-terminal region of the talin rod, and show that the three helical bundles R1-R3 in this region unfold in three distinct steps consistent with the domains unfolding independently. Mechanical stretching of talin R1-R3 enhances its binding to vinculin and vinculin binding inhibits talin refolding after force is released. Mutations that stabilize R3 identify it as the initial mechano-sensing domain in talin, unfolding at ~5 pN, suggesting that 5 pN is the force threshold for vinculin binding and adhesion progression

    Crosstalk between Virulence Loci: Regulation of Salmonella enterica Pathogenicity Island 1 (SPI-1) by Products of the std Fimbrial Operon

    Get PDF
    Invasion of intestinal epithelial cells is a critical step in Salmonella infection and requires the expression of genes located in Salmonella pathogenicity island 1 (SPI-1). A key factor for SPI-1 expression is DNA adenine (Dam) methylation, which activates synthesis of the SPI-1 transcriptional activator HilD. Dam-dependent regulation of hilD is postranscriptional (and therefore indirect), indicating the involvement of unknown cell functions under Dam methylation control. A genetic screen has identified the std fimbrial operon as the missing link between Dam methylation and SPI-1. We show that all genes in the std operon are part of a single transcriptional unit, and describe three previously uncharacterized ORFs (renamed stdD, stdE, and stdF). We present evidence that two such loci (stdE and stdF) are involved in Dam-dependent control of Salmonella SPI-1: in a Dam− background, deletion of stdE or stdF suppresses SPI-1 repression; in a Dam+ background, constitutive expression of StdE and/or StdF represses SPI-1. Repression of SPI-1 by products of std operon explains the invasion defect of Salmonella Dam− mutants, which constitutively express the std operon. Dam-dependent repression of std in the ileum may be required to permit invasion, as indicated by two observations: constitutive expression of StdE and StdF reduces invasion of epithelial cells in vitro (1,000 fold) and attenuates Salmonella virulence in the mouse model (>60 fold). In turn, crosstalk between std and SPI-1 may play a role in intestinal infections by preventing expression of SPI-1 in the caecum, an intestinal compartment in which the std operon is known to be expressed

    Genetic background determines response to hemostasis and thrombosis

    Get PDF
    BACKGROUND: Thrombosis is the fatal and disabling consequence of cardiovascular diseases, the leading cause of mortality and morbidity in Western countries. Two inbred mouse strains, C57BL/6J and A/J, have marked differences in susceptibility to obesity, atherosclerosis, and vessel remodeling. However, it is unclear how these diverse genetic backgrounds influence pathways known to regulate thrombosis and hemostasis. The objective of this study was to evaluate thrombosis and hemostasis in these two inbred strains and determine the phenotypic response of A/J chromosomes in the C57BL/6J background. METHODS: A/J and C57Bl/6J mice were evaluated for differences in thrombosis and hemostasis. A thrombus was induced in the carotid artery by application of the exposed carotid to ferric chloride and blood flow measured until the vessel occluded. Bleeding and rebleeding times, as surrogate markers for thrombosis and hemostasis, were determined after clipping the tail and placing in warm saline. Twenty-one chromosome substitution strains, A/J chromosomes in a C57BL/6J background, were screened for response to the tail bleeding assay. RESULTS: Thrombus occlusion time was markedly decreased in the A/J mice compared to C57BL/6J mice. Tail bleeding time was similar in the two strains, but rebleeding time was markedly increased in the A/J mice compared to C57BL/6J mice. Coagulation times and tail morphology were similar, but tail collagen content was higher in A/J than C57BL/6J mice. Three chromosome substitution strains, B6-Chr5(A/J), B6-Chr11(A/J), and B6-Chr17(A/J), were identified with increased rebleeding time, a phenotype similar to A/J mice. Mice heterosomic for chromosomes 5 or 17 had rebleeding times similar to C57BL/6J mice, but when these two chromosome substitution strains, B6-Chr5(A/J )and B6-Chr17(A/J), were crossed, the A/J phenotype was restored in these doubly heterosomic progeny. CONCLUSION: These results indicate that susceptibility to arterial thrombosis and haemostasis is remarkably different in C57BL/and A/J mice. Three A/J chromosome substitution strains were identified that expressed a phenotype similar to A/J for rebleeding, the C57Bl/6J background could modify the A/J phenotype, and the combination of two A/J QTL could restore the phenotype. The diverse genetic backgrounds and differences in response to vascular injury induced thrombosis and the tail bleeding assay, suggest the potential for identifying novel genetic determinants of thrombotic risk

    Aversive Learning in Honeybees Revealed by the Olfactory Conditioning of the Sting Extension Reflex

    Get PDF
    Invertebrates have contributed greatly to our understanding of associative learning because they allow learning protocols to be combined with experimental access to the nervous system. The honeybee Apis mellifera constitutes a standard model for the study of appetitive learning and memory since it was shown, almost a century ago, that bees learn to associate different sensory cues with a reward of sugar solution. However, up to now, no study has explored aversive learning in bees in such a way that simultaneous access to its neural bases is granted. Using odorants paired with electric shocks, we conditioned the sting extension reflex, which is exhibited by harnessed bees when subjected to a noxious stimulation. We show that this response can be conditioned so that bees learn to extend their sting in response to the odorant previously punished. Bees also learn to extend the proboscis to one odorant paired with sugar solution and the sting to a different odorant paired with electric shock, thus showing that they can master both appetitive and aversive associations simultaneously. Responding to the appropriate odorant with the appropriate response is possible because two different biogenic amines, octopamine and dopamine subserve appetitive and aversive reinforcement, respectively. While octopamine has been previously shown to substitute for appetitive reinforcement, we demonstrate that blocking of dopaminergic, but not octopaminergic, receptors suppresses aversive learning. Therefore, aversive learning in honeybees can now be accessed both at the behavioral and neural levels, thus opening new research avenues for understanding basic mechanisms of learning and memory

    Unification of New Zealand's local vertical datums: iterative gravimetric quasigeoid computations

    Get PDF
    New Zealand uses 13 separate local vertical datums (LVDs) based on normal-orthometric-corrected precise geodetic levelling from 12 different tide-gauges. We describe their unification using a regional gravimetric quasigeoid model and GPS-levelling data on each LVD. A novel application of iterative quasigeoid computation is used, where the LVD offsets computed from earlier models are used to apply additional gravity reductions from each LVD to that model. The solution converges after only three iterations yielding LVD offsets ranging from 0.24 m to 0.58 m with an average standard deviation of 0.08 m. The so-computed LVD offsets agree, within expected data errors, with geodetically levelled height differences at common benchmarks between adjacent LVDs. This shows that iterated quasigeoid models do have a role in vertical datum unification

    Reappraising Social Insect Behavior through Aversive Responsiveness and Learning

    Get PDF
    Background: The success of social insects can be in part attributed to their division of labor, which has been explained by a response threshold model. This model posits that individuals differ in their response thresholds to task-associated stimuli, so that individuals with lower thresholds specialize in this task. This model is at odds with findings on honeybee behavior as nectar and pollen foragers exhibit different responsiveness to sucrose, with nectar foragers having higher response thresholds to sucrose concentration. Moreover, it has been suggested that sucrose responsiveness correlates with responsiveness to most if not all other stimuli. If this is the case, explaining task specialization and the origins of division of labor on the basis of differences in response thresholds is difficult. Methodology: To compare responsiveness to stimuli presenting clear-cut differences in hedonic value and behavioral contexts, we measured appetitive and aversive responsiveness in the same bees in the laboratory. We quantified proboscis extension responses to increasing sucrose concentrations and sting extension responses to electric shocks of increasing voltage. We analyzed the relationship between aversive responsiveness and aversive olfactory conditioning of the sting extension reflex, and determined how this relationship relates to division of labor. Principal Findings: Sucrose and shock responsiveness measured in the same bees did not correlate, thus suggesting that they correspond to independent behavioral syndromes, a foraging and a defensive one. Bees which were more responsiv

    Integrin-Specific Mechanoresponses to Compression and Extension Probed by Cylindrical Flat-Ended AFM Tips in Lung Cells

    Get PDF
    Cells from lung and other tissues are subjected to forces of opposing directions that are largely transmitted through integrin-mediated adhesions. How cells respond to force bidirectionality remains ill defined. To address this question, we nanofabricated flat-ended cylindrical Atomic Force Microscopy (AFM) tips with ∼1 µm2 cross-section area. Tips were uncoated or coated with either integrin-specific (RGD) or non-specific (RGE/BSA) molecules, brought into contact with lung epithelial cells or fibroblasts for 30 s to form focal adhesion precursors, and used to probe cell resistance to deformation in compression and extension. We found that cell resistance to compression was globally higher than to extension regardless of the tip coating. In contrast, both tip-cell adhesion strength and resistance to compression and extension were the highest when probed at integrin-specific adhesions. These integrin-specific mechanoresponses required an intact actin cytoskeleton, and were dependent on tyrosine phosphatases and Ca2+ signaling. Cell asymmetric mechanoresponse to compression and extension remained after 5 minutes of tip-cell adhesion, revealing that asymmetric resistance to force directionality is an intrinsic property of lung cells, as in most soft tissues. Our findings provide new insights on how lung cells probe the mechanochemical properties of the microenvironment, an important process for migration, repair and tissue homeostasis
    corecore