1,036 research outputs found
Recommended from our members
A Preliminary Report on X-Ray Photoabsorption Coefficients andAtomic Scattering Factors for 92 Elements in the 10-10,000 eVRegion
Based on currently available photoabsorption measurements and recent theoretical calculations by Doolen and Liberman (Physica Scripta 36, 77 (1987)), a revised (from ADNDT 27, 1 (1982)) best-fit determination of the photoabsorption cross sections is presented here for the elements Z=1 to Z=92 in the 10-10,000 eV range. The photoabsorption data used include those described in the Lockheed and DOE listings of research abstracts for the past ten years and those which have been recently added to the comprehensive NBS Measured Data Base (NBSIR 86-3461, Hubbell et al.). The best-fit curves are compared with both the compilation of measurements and the calculations by Doolen and Liberman. Using the photoabsorption curves, the atomic scattering factors have been calculated for the energy range 50-10,000 eV and are also presented in this report
An MPEG-7 scheme for semantic content modelling and filtering of digital video
Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users
Time perception and its neuropsychological correlates in patients with schizophrenia and in healthy volunteers
Disordered time perception has been reported in schizophrenia. We investigated time perception dysfunction and its neuropsychological correlates in patients with schizophrenia. Participants comprised 38 patients and 38 age- and sex-matched healthy volunteers who were compared in an auditory temporal bisection paradigm using two interval ranges (a 400/800 ins condition and a 1000/2000 ms condition). In the temporal bisection, subjects were required to categorise a probe duration as short or long, based upon the similarity with two reference durations. All subjects also completed a battery of neuropsychological tests measuring sustained attention, short- and long-term memory and executive function. In the 400/800 ins condition, patients judged durations significantly shorter than did control subjects. Patients also exhibited decreased temporal sensitivity in both conditions. We found in both groups a negative association between temporal sensitivity and sustained attention for the 400/800 ms condition, and between temporal sensitivity and long-term memory for the 1000/200 ms condition. In patients, short-term memory performance was negatively associated with duration judgement in both conditions, while executive dysfunction was correlated to a general performance deficit in the 400/800 ms condition. These findings suggest the possibility that time perception abnormalities in schizophrenia are part of neuropsychological dysfunction and are likely to adversely impact upon activity of daily living. (c) 2008 Elsevier Ireland Ltd. All rights reserved
Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica
Acid pH often triggers changes in gene expression. However, little is known about the identity of the gene products that sense fluctuations in extracytoplasmic pH. The Gram-negative pathogen Salmonella enterica serovar Typhimurium experiences a number of acidic environments both inside and outside animal hosts. Growth in mild acid (pH 5.8) promotes transcription of genes activated by the response regulator PmrA, but the signalling pathway(s) that mediates this response has thus far remained unexplored. Here we report that this activation requires both PmrA's cognate sensor kinase PmrB, which had been previously shown to respond to Fe(3+) and Al(3+), and PmrA's post-translational activator PmrD. Substitution of a conserved histidine or of either one of four conserved glutamic acid residues in the periplasmic domain of PmrB severely decreased or abolished the mild acid-promoted transcription of PmrA-activated genes. The PmrA/PmrB system controls lipopolysaccharide modifications mediating resistance to the antibiotic polymyxin B. Wild-type Salmonella grown at pH 5.8 were > 100 000-fold more resistant to polymyxin B than organisms grown at pH 7.7. Our results suggest that protonation of the PmrB periplasmic histidine and/or of the glutamic acid residues activate the PmrA protein, and that mild acid promotes cellular changes resulting in polymyxin B resistance
Mutations of the BRAF gene in human cancer
Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma
Exposure to prenatal maternal distress and infant white matter neurodevelopment
The prenatal period represents a critical time for brain growth and development. These rapid neurological advances render the fetus susceptible to various influences with life-long implications for mental health. Maternal distress signals are a dominant early life influence, contributing to birth outcomes and risk for offspring psychopathology. This prospective longitudinal study evaluated the association between prenatal maternal distress and infant white matter microstructure. Participants included a racially and socioeconomically diverse sample of 85 mother-infant dyads. Prenatal distress was assessed at 17 and 29 weeks' gestational age (GA). Infant structural data were collected via diffusion tensor imaging (DTI) at 42-45 weeks' postconceptional age. Findings demonstrated that higher prenatal maternal distress at 29 weeks' GA was associated with increased fractional anisotropy, b =.283, t(64) = 2.319, p =.024, and with increased axial diffusivity, b =.254, t(64) = 2.067, p =.043, within the right anterior cingulate white matter tract. No other significant associations were found with prenatal distress exposure and tract fractional anisotropy or axial diffusivity at 29 weeks' GA, or earlier in gestation
On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH() + NH()
We present a detailed analysis of the role of the magnetic dipole-dipole
interaction in cold and ultracold collisions. We focus on collisions between
magnetically trapped NH molecules, but the theory is general for any two
paramagnetic species for which the electronic spin and its space-fixed
projection are (approximately) good quantum numbers. It is shown that dipolar
spin relaxation is directly associated with magnetic-dipole induced avoided
crossings that occur between different adiabatic potential curves. For a given
collision energy and magnetic field strength, the cross-section contributions
from different scattering channels depend strongly on whether or not the
corresponding avoided crossings are energetically accessible. We find that the
crossings become lower in energy as the magnetic field decreases, so that
higher partial-wave scattering becomes increasingly important \textit{below} a
certain magnetic field strength. In addition, we derive analytical
cross-section expressions for dipolar spin relaxation based on the Born
approximation and distorted-wave Born approximation. The validity regions of
these analytical expressions are determined by comparison with the NH + NH
cross sections obtained from full coupled-channel calculations. We find that
the Born approximation is accurate over a wide range of energies and field
strengths, but breaks down at high energies and high magnetic fields. The
analytical distorted-wave Born approximation gives more accurate results in the
case of s-wave scattering, but shows some significant discrepancies for the
higher partial-wave channels. We thus conclude that the Born approximation
gives generally more meaningful results than the distorted-wave Born
approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold
Quantum Matter - Achievements and Prospects (2011
Protein Ingestion in Reducing the Risk of Late-Onset Post-Exercise Hypoglycemia: A Pilot Study in Adolescents and Youth with Type 1 Diabetes
Dietary protein causes dose-dependent hyperglycemia in individuals with type 1 diabetes (T1D). This study investigated the effect of consuming 50 g of protein on overnight blood glucose levels (BGLs) following late-afternoon moderate-intensity exercise. Six participants (3M:3F) with T1D, HbA1c 7.5 ± 0.8% (58.0 ± 8.7 mmol/mol) and aged 20.2 ± 3.1 years exercised for 45 min at 1600 h and consumed a protein drink or water alone at 2000 h, on two separate days. A basal insulin euglycemic clamp was employed to measure the mean glucose infusion rates (m-GIR) required to maintain euglycemia on both nights. The m-GIR on the protein and water nights during the hypoglycemia risk period and overnight were 0.27 ± 043 vs. 1.60 ± 0.66 mg/kg/min (p = 0.028, r = 0.63) and 0.51 ± 0.16 vs. 1.34 ± 0.71 mg/kg/min (p = 0.028, r = 0.63), respectively. Despite ceasing intravenous glucose infusion on the protein night, the BGLs peaked at 9.6 ± 1.6 mmol/L, with a hypoglycemia risk period mean of 7.8 ± 1.5 mmol/L compared to 5.9 ± 0.4 mmol/L (p = 0.028) on the water night. The mean plasma glucagon levels were 51.5 ± 14.1 and 27.2 ± 10.1 ng/L (p = 0.028) on the protein and water night, respectively. This suggests that an intake of protein is effective at reducing the post-exercise hypoglycemia risk, potentially via a glucagon-mediated stimulation of glucose production. However, 50 g of protein may be excessive for maintaining euglycemia.Nirubasini Paramalingam, Barbara L. Keating, Tarini Chetty, Paul A. Fournier, Wayne H. K. Soon, Joanne M. O, Dea, Alison G. Roberts, Michael Horowitz, Timothy W. Jones, and Elizabeth A. Davi
- …