10 research outputs found

    A Coupled Equations Model for Epitaxial Growth on Textured Surfaces

    Full text link
    We have developed a continuum model that explains the complex surface shapes observed in epitaxial regrowth on micron scale gratings. This model describes the dependence of the surface morphology on film thickness and growth temperature in terms of a few simple atomic scale processes including adatom diffusion, step-edge attachment and detachment, and a net downhill migration of surface adatoms. The continuum model reduces to the linear part of the Kardar-Parisi-Zhang equation with a flux dependent smoothing coefficient in the long wavelength limit.Comment: 11 pages, 4 figures. Submitted to the Journal of Crystal Growt

    Vortex dynamics and states of artificially layered superconducting films with correlated defects

    Full text link
    Linear resistances and IVIV-characteristics have been measured over a wide range in the parameter space of the mixed phase of multilayered a-TaGe/Ge films. Three films with varying interlayer coupling and correlated defects oriented at an angle 25\approx 25 from the film normal were investigated. Experimental data were analyzed within vortex glass models and a second order phase transition from a resistive vortex liquid to a pinned glass phase. Various vortex phases including changes from three to two dimensional behavior depending on anisotropy have been identified. Careful analysis of IVIV-characteristics in the glass phases revealed a distinctive TT and HH-dependence of the glass exponent μ\mu. The vortex dynamics in the Bose-glass phase does not follow the predicted behavior for excitations of vortex kinks or loops.Comment: 16 pages, 10 figures, 3 table

    Magnetic properties of ErN films

    No full text
    International audienc

    Disorders of compulsivity: a common bias towards learning habits

    No full text
    Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion

    Rare-earth mononitrides

    No full text
    corecore