229 research outputs found
Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets
<p>Abstract</p> <p>Background</p> <p>To gain insight into host-microbe interactions in a piglet model, a functional genomics approach was used to address the working hypothesis that transcriptionally regulated genes associated with promoting epithelial barrier function are activated as a defensive response to the intestinal microbiota. Cesarean-derived germfree (GF) newborn piglets were colonized with adult swine feces, and villus and crypt epithelial cell transcriptomes from colonized and GF neonatal piglets were compared using laser-capture microdissection and high-density porcine oligonucleotide microarray technology.</p> <p>Results</p> <p>Consistent with our hypothesis, resident microbiota induced the expression of genes contributing to intestinal epithelial cell turnover, mucus biosynthesis, and priming of the immune system. Furthermore, differential expression of genes associated with antigen presentation (pan SLA class I, <it>B2M</it>, <it>TAP1 </it>and <it>TAPBP</it>) demonstrated that microbiota induced immune responses using a distinct regulatory mechanism common for these genes. Specifically, gene network analysis revealed that microbial colonization activated both type I (IFNAR) and type II (IFNGR) interferon receptor mediated signaling cascades leading to enhanced expression of signal transducer and activator of transcription 1 (STAT1), STAT2 and IFN regulatory factor 7 (IRF7) transcription factors and the induction of IFN-inducible genes as a reflection of intestinal epithelial inflammation. In addition, activated RNA expression of NF-kappa-B inhibitor alpha (<it>NFκBIA</it>; a.k.a I-kappa-B-alpha, IKBα) and toll interacting protein (<it>TOLLIP</it>), both inhibitors of inflammation, along with downregulated expression of the immunoregulatory transcription factor GATA binding protein-1 (<it>GATA1</it>) is consistent with the maintenance of intestinal homeostasis.</p> <p>Conclusion</p> <p>This study supports the concept that the intestinal epithelium has evolved to maintain a physiological state of inflammation with respect to continuous microbial exposure, which serves to sustain a tight intestinal barrier while preventing overt inflammatory responses that would compromise barrier function.</p
Progress in Classical and Quantum Variational Principles
We review the development and practical uses of a generalized Maupertuis
least action principle in classical mechanics, in which the action is varied
under the constraint of fixed mean energy for the trial trajectory. The
original Maupertuis (Euler-Lagrange) principle constrains the energy at every
point along the trajectory. The generalized Maupertuis principle is equivalent
to Hamilton's principle. Reciprocal principles are also derived for both the
generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis
Principle is the classical limit of Schr\"{o}dinger's variational principle of
wave mechanics, and is also very useful to solve practical problems in both
classical and semiclassical mechanics, in complete analogy with the quantum
Rayleigh-Ritz method. Classical, semiclassical and quantum variational
calculations are carried out for a number of systems, and the results are
compared. Pedagogical as well as research problems are used as examples, which
include nonconservative as well as relativistic systems
Genetically Induced Tumors in the Oncopig Model Invoke an Antitumor Immune Response Dominated by Cytotoxic CD8β<sup>+</sup> T Cells and Differentiated γδ T Cells Alongside a Regulatory Response Mediated by FOXP3<sup>+</sup> T Cells and Immunoregulatory Molecules
In recent years, immunotherapy has shown considerable promise in the management of several malignancies. However, the majority of preclinical studies have been conducted in rodents, the results of which often translate poorly to patients given the substantial differences between murine and human immunology. As the porcine immune system is far more analogous to that of humans, pigs may serve as a supplementary preclinical model for future testing of such therapies. We have generated the genetically modified Oncopig with inducible tumor formation resulting from concomitant KRASG12D and TP53R167H mutations under control of an adenoviral vector Cre-recombinase (AdCre). The objective of this study was to characterize the tumor microenvironment in this novel animal model with respect to T-cell responses in particular and to elucidate the potential use of Oncopigs for future preclinical testing of cancer immunotherapies. In this study, we observed pronounced intratumoral T-cell infiltration with a strong CD8β+ predominance alongside a representation of highly differentiated γδ T cells. The infiltrating CD8β+ T cells displayed increased expression of the cytotoxic marker perforin when compared with the peripheral T-cell pool. Similarly, there was robust granzyme B staining localizing to the tumors; affirming the presence of cytotoxic immune cells within the tumor. In parallel with this antitumor immune response, the tumors displayed enrichment in FOXP3-expressing T cells and increased gene expression of indoleamine 2,3-dioxygenase 1 (IDO1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and programmed death-ligand 1 (PDL1). Finally, we investigated the Oncopig immune system in mediating antitumor immunity. We observed pronounced killing of autologous tumor cells, which demonstrates the propensity of the Oncopig immune system to recognize and mount a cytotoxic response against tumor cells. Together, these findings suggest innate and adaptive recognition of the induced tumors with a concomitant in vivo suppression of T-cell effector functions. Combined, the data support that the Oncopig may serve as a valuable model for future preclinical testing of immunotherapies aimed at reactivating tumor-directed cytotoxicity in vivo
Recommended from our members
Intracranial and subcortical volumes in adolescents with early‐onset psychosis: A multisite mega‐analysis from the ENIGMA consortium
Early‐onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early‐onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early‐onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early‐onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed‐effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen's d = −0.39) and hippocampal (d = −0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early‐onset schizophrenia (d = −0.34) and affective psychosis (d = −0.42), and early‐onset schizophrenia showed lower hippocampal (d = −0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = −0.42). The findings demonstrate a similar pattern of brain alterations in early‐onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early‐onset psychosis
Structure of a bacterial type III secretion system in contact with a host membrane in situ
Many bacterial pathogens of animals and plants use a conserved type III secretion system
(T3SS) to inject virulence effector proteins directly into eukaryotic cells to subvert host
functions. Contact with host membranes is critical for T3SS activation, yet little is known
about T3SS architecture in this state or the conformational changes that drive effector
translocation. Here we use cryo-electron tomography and sub-tomogram averaging to derive
the intact structure of the primordial Chlamydia trachomatis T3SS in the presence and absence
of host membrane contact. Comparison of the averaged structures demonstrates a marked
compaction of the basal body (4 nm) occurs when the needle tip contacts the host cell
membrane. This compaction is coupled to a stabilization of the cytosolic sorting platform–
ATPase. Our findings reveal the first structure of a bacterial T3SS from a major human
pathogen engaged with a eukaryotic host, and reveal striking ‘pump-action’ conformational
changes that underpin effector injection
Recommended from our members
KRAS(G12D) and TP53(R167H) Cooperate to Induce Pancreatic Ductal Adenocarcinoma in Sus scrofa Pigs
Although survival has improved in recent years, the prognosis of patients with advanced pancreatic ductal adenocarcinoma (PDAC) remains poor. Despite substantial differences in anatomy, physiology, genetics, and metabolism, the overwhelming majority of preclinical testing relies on transgenic mice. Hence, while mice have allowed for tremendous advances in cancer biology, they have been a poor predictor of drug performance/toxicity in the clinic. Given the greater similarity of sus scrofa pigs to humans, we engineered transgenic sus scrofa expressing a LSL-KRASG12D-TP53R167H cassette. By applying Adeno-Cre to pancreatic duct cells in vitro, cells self-immortalized and established tumors in immunocompromised mice. When Adeno-Cre was administered to the main pancreatic duct in vivo, pigs developed extensive PDAC at the injection site hallmarked by excessive proliferation and desmoplastic stroma. This serves as the first large animal model of pancreatic carcinogenesis, and may allow for insight into new avenues of translational research not before possible in rodents
Obstructive sleep apnea, verbal memory, and executive function in a community-based high-risk population identified by the Berlin Questionnaire Akershus Sleep Apnea Project
Purpose Cognitive functions in community-dwelling adults at high risk of obstructive sleep apnea have not been described and nor are associations between cognitive functions and obstructive sleep apnea severity fully understood. The study aimed to describe verbal memory and executive function in community-dwelling adults identified by the Berlin Questionnaire and to investigate associations between these cognitive domains and different obstructive sleep apnea severity indicators. Methods Among 29,258 age- and gender-stratified persons 30–65 years who received the Berlin Questionnaire by mail, 16,302 (55.7%) responded. From 654 randomly drawn respondents with BQ high risk who were approached for study participation, 290 participants (55.9% males, mean age 48.2 years) were included. Verbal memory was assessed by Rey Auditory Verbal Learning Test and executive function by Stroop test. Obstructive sleep apnea severity indicators were assessed by polysomnography
- …