168 research outputs found

    Optimisation and comparison of transient expression methods to express the green fluorescent protein in the obligate biotrophic oomycete Plasmopara viticola

    Get PDF
    Grape downy mildew is caused by Plasmopara viticola, an obligate biotrophic oomycete and a major pathogen of grapevine. Studying obligate biotrophic pathogens is difficult as they cannot grow without their host. We therefore attempted to develop a method where the pathogen could be visualized and quantified in planta without killing the host plant. To this end P. viticola was transformed with the marker gene gfp coding for the green fluorescent protein. Various transformation methods, namely electroporation, particle bombardment and transformation with Agrobacterium tumefaciens were applied. Although some methods yielded positive transformation events, no stable strain of P. viticola expressing gfp could be generated. Using the electroporation method, we obtained transient P. viticola transformants expressing gfp over 4 generations. In contrast, particle bombardment failed in transforming P. viticola. Transformation with A. tumefaciens had a low efficiency, only some structures were fluorescent and fluorescence was never observed in the subsequent generations.

    Callose deposition: a multifaceted plant defense response

    Get PDF

    Acquired resistance in Arabidopsis.

    Full text link

    Editorial: Induced resistance and priming against pests and pathogens

    Get PDF
    Due to the rapidly changing climate and increasingly restrictive regulations on the use of pesticides, there is an urgent need to discover and develop new and more sustainable strategies of crop protection that meet the present and future needs of a growing world population. Fundamental research on plant-microbe and plant-insect interactions – both pathogenic and beneficial – is of key importance to gain a better molecular, physiological and ecological understanding of these complex interactions and so generate the tools necessary to develop new crop protection strategies. Induced resistance (IR) develops after treatment of plants with pathogens, pests, beneficial microorganisms, chemical agents, physical wounding, or herbivory. Plants exposed to such stimuli increase their level of basal resistance against future attacks compared to non-stimulated plants. IR is often based on a priming of basal defense mechanisms, which enables a faster and/or stronger defense response upon secondary challenge. Given its long-lasting nature and broad-spectrum effectiveness, IR has long been recognized for its value in integrated pest and disease management approaches. This Research Topic highlights the latest advances in research on IR and priming presented at the IOBC-PR-IR2022 conference in Sheffield, UK, from 4th to 7th April 2022, which is organized by the working group of the International Organization for Biological Control. In addition to reviewing the scientific significance of this work, we discuss future challenges in IR research and the potential application of IR in future crop protection strategies

    A transcriptional reference map of defence hormone responses in potato

    Get PDF
    Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies

    Dufulin Activates HrBP1 to Produce Antiviral Responses in Tobacco

    Get PDF
    BACKGROUND: Dufulin is a new antiviral agent that is highly effective against plant viruses and acts by activating systemic acquired resistance (SAR) in plants. In recent years, it has been used widely to prevent and control tobacco and rice viral diseases in China. However, its targets and mechanism of action are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, differential in-gel electrophoresis (DIGE) and classical two-dimensional electrophoresis (2-DE) techniques were combined with mass spectrometry (MS) to identify the target of Dufulin. More than 40 proteins were found to be differentially expressed (≥1.5 fold or ≤1.5 fold) upon Dufulin treatment in Nicotiana tabacum K(326). Based on annotations in the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, these proteins were found to be related to disease resistance. Directed acyclic graph (DAG) analysis of the various pathways demonstrated harpin binding protein-1 (HrBP1) as the target of action of Dufulin. Additionally, western blotting, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and real time PCR analyses were also conducted to identify the specific mechanism of action of Dufulin. Our results show that activation of HrBP1 triggers the salicylic acid (SA) signaling pathway and thereby produces antiviral responses in the plant host. A protective assay based on lesion counting further confirmed the antiviral activity of Dufulin. CONCLUSION: This study identified HrBP1 as a target protein of Dufulin and that Dufulin can activate the SA signaling pathway to induce host plants to generate antiviral responses

    Analysis of the Plant bos1 Mutant Highlights Necrosis as an Efficient Defence Mechanism during D. dadantii/Arabidospis thaliana Interaction

    Get PDF
    Dickeya dadantii is a broad host range phytopathogenic bacterium provoking soft rot disease on many plants including Arabidopsis. We showed that, after D. dadantii infection, the expression of the Arabidopsis BOS1 gene was specifically induced by the production of the bacterial PelB/C pectinases able to degrade pectin. This prompted us to analyze the interaction between the bos1 mutant and D. dadantii. The phenotype of the infected bos1 mutant is complex. Indeed, maceration symptoms occurred more rapidly in the bos1 mutant than in the wild type parent but at a later stage of infection, a necrosis developed around the inoculation site that provoked a halt in the progression of the maceration. This necrosis became systemic and spread throughout the whole plant, a phenotype reminiscent of that observed in some lesion mimic mutants. In accordance with the progression of maceration symptoms, bacterial population began to grow more rapidly in the bos1 mutant than in the wild type plant but, when necrosis appeared in the bos1 mutant, a reduction in bacterial population was observed. From the plant side, this complex interaction between D. dadantii and its host includes an early plant defence response that comprises reactive oxygen species (ROS) production accompanied by the reinforcement of the plant cell wall by protein cross-linking. At later timepoints, another plant defence is raised by the death of the plant cells surrounding the inoculation site. This plant cell death appears to constitute an efficient defence mechanism induced by D. dadantii during Arabidopsis infection

    Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    Get PDF
    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth
    corecore