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Summary

Grape downy mildew is caused by Plasmopara viti-
cola, an obligate biotrophic oomycete and a major path-
ogen of grapevine. Studying obligate biotrophic patho-
gens is difficult as they cannot grow without their host. 
We therefore attempted to develop a method where the 
pathogen could be visualized and quantified in planta 
without killing the host plant. To this end P. viticola 
was transformed with the marker gene gfp coding for 
the green fluorescent protein. Various transformation 
methods, namely electroporation, particle bombard-
ment and transformation with Agrobacterium tume-
faciens were applied. Although some methods yielded 
positive transformation events, no stable strain of 
P. viticola expressing gfp could be generated. Using the 
electroporation method, we obtained transient P. viti-
cola transformants expressing gfp over 4 generations. 
In contrast, particle bombardment failed in transform-
ing P. viticola. Transformation with A. tumefaciens had 
a low efficiency, only some structures were fluorescent 
and fluorescence was never observed in the subsequent 
generations.

K e y   w o r d s :  Plasmopara viticola, oomycete, transfor-
mation, obligate biotroph, grapevine.

Introduction

Downy mildews are widespread, severe plant diseases, 
and are generally favoured by cool, humid weather condi-
tions. The causal organisms, in contrast to true fungi, be-
long to the phylum Oomycota in the kingdom Stramenopila. 
The Oomycota are divided into 13 genera, including Plas-
mopara (THINES 2007) which represents at least 23 species 
(BRANDENBURGER AND HAGEDORN 2006).

Downy mildew of grapevine (Vitis vinifera) is caused 
by Plasmopara viticola. During periods of high humidity, 
this obligate biotrophic pathogen can infect large areas 
within a short period of time and cause substantial dam-
age to most parts of the plants including leaves, flowers 
and young berries. Control is usually achieved by large 
scale, intensive application of agrochemicals. The eco-
nomic costs and the negative environmental impact of such 
disease control methods call for the development of alter-
native strategies, involving manipulation of host defence 

mechanisms (FERREIRA et al. 2004), breeding for resistance 
(NEUHAUS et al. 2006) and biocontrol strategies (MUSETTI 
et al. 2006).

The main means of reproduction and spread of P. viti-
cola are asexual sporangiospores generated 5 to 7 d after 
beginning of the asexual cycle of the pathogen. Sporan-
giospores released on the plant surface swim towards sto-
mata, encyst there and develop a germ tube which pen-
etrates into the substomatal cavity (LANGCAKE and LOVELL 
1980, DENZER 1995, GINDRO et al. 2003). P. viticola is a 
true obligate biotroph completely depending on its host, 
the grapevine plant, to successfully complete its asexual 
and sexual cycle. This makes maintenance and manipula-
tion of interactions between plant host and pathogen rather 
difficult. A host-free system has been established to study 
the early development of P. viticola from sporangiospore 
release until the formation of a germ tube (RIEMANN et al. 
2002). By comparing this host-free system with P. viticola 
in planta, KIEFER et al. (2002) have found that the early 
development of P. viticola is specifically and co-ordinately 
regulated by factors originating from the host plant and by 
the leaf surface topography (KORTEKAMP 2003).

In order to have a method to rapidly monitor patho-
gen development inside the tissue we decided to generate a 
P. viticola strain expressing the reporter gene gfp. Ustilago 
maydis was the first filamentous fungus to be transformed 
successfully with gfp (SPELLIG et al. 1996). BOTTIN and co-
workers (1999) showed for the first time that the gfp gene 
reporter could be used in an oomycete, both as a quantita-
tive reporter of gene induction and as a vital marker allow-
ing the study of development of Phytophthora parasitica 
in vitro and in the host plant. To facilitate the in planta 
tracking of fungi and oomycetes and to measure their bio-
mass, they have been labelled with GFP (MAOR et al. 1998, 
CHAURE et al. 2000, SI-AMMOUR et al. 2003). Labelling 
oomycetes with GFP requires strong constitutive expres-
sion of the transgene which usually results in a cytoplasmic 
expression in different structures of the organism (hyphae, 
spores, appressoria) with a limited impact on growth or 
pathogenicity (BOTTIN et al. 1999, VAN WEST et al. 1999 a). 
Expression of gfp in oomycetes requires a gfp variant that is 
efficiently translated in oomycetes, an oomycete promoter, 
and a transformation system that satisfies the requirements 
of a given experimental objective. gfp expression vectors 
have been developed for all major classes of filamentous 
fungi and oomycetes (LORANG et al. 2001).
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magnification using a binocular dissecting microscope 
(Nikon SMZ 1000) equipped with filters GFP-L (ex. 480; 
em. 510) and GFP-B (ex.480; em. 535/50) by suction into 
a thin Pasteur pipette filled with a cotton filter. 

V e c t o r s   f o r   t r a n s f o r m a t i o n   o f   
P.  v i t i c o l a :  Vector P34GF, which contains a en-
hanced gfp (PANG et al. 1996), was prepared as follows. 
The transformation vector p34GFN used to express gfp in 
Phytophtora species (SI-AMMOUR et al. 2003) was modified 
to remove the geneticin (nptII) resistance gene. Geneticin 
cannot be used as selective marker due to its toxic effect on 
grapevine plants. For vector construction, the Ham34Pro-
gfp-Ham34Ter cassette was excised with HindIII and Bam-
HI from the p34GFN vector and cloned into the BamHI 
and HindIII sites of pUC18, resulting in P34GF. Non-lin-
earised vector was used for transformations.

Pb34GF was constructed by the insertion of the BamHI/
EcoRI fragment from p34GFN containing the Ham34Pro-
gfp-Ham34Ter cassette into the binary plasmid p3300. 
Pb34 GF was electroporated into Agrobacterium tumefa-
ciens strains GV3101. All DNA manipulations were per-
formed using standard procedures (SAMBROOK et al. 1989) 
and E. coli strain DH5α was used for general cloning and 
was grown at 37°C in Luria-Bertania (LB) medium (SAM-
BROOK et al. 1989). DNA for electroporation experiments 
was prepared in E. coli strain DH5α and purified using the 
JETstar 20 Plasmid Midiprep Kit (Genomed).

C u l t u r e   c o n d i t i o n s   o f   A .   t u m e f a c i e n s :  
A. tumefaciens GV3101 cells were grown overnight at 
28 °C in low-salt LB medium (amended with 5 g·l-1 NaCl) 
containing 100 μg·ml-1 rifampicin and 50 μg·ml-1 kanamy-
cin. Subsequently, 1 ml of the culture was washed twice 
with 1 ml induction medium (IM) (MURASHIGE and SKOOG 
salts and 40 mM 2-(N-morpholino) ethanesulphonic acid 
(MES), pH 5.4, 10 mM glucose, 0.5 % (w/v) glycerol) sup-
plemented with 75 μM acetosyringone (AS), 10 × diluted 
in fresh IM + AS and grown for another 5 h at 28 °C. The 
final OD600 of the cultures was adjusted to approximately 
0.2. Before co-cultivation, the cells were washed twice 
with an equal volume of sterile distilled water.

E l e c t r o p o r a t i o n :  Sporangia of P. viticola were 
suspended to a concentration of 2.4 x 106 sporangia/ml in 
distilled water. After 30 min, 15 µg of p34GF vector DNA 
were added to 500 µl of the suspension and electroporated 
using the Gene Pulser Xcell (Bio-Rad). Rapidly, 500 µl of 
distilled water were added to the cuvette and the electropo-
rated suspension was used to inoculate leaves of Chasselas 
at a concentration of 1.2 x 106 sporangia·ml-1. During 10 d, 
the inoculated leaves were monitored for GFP fluorescence 
using a binocular dissecting microscope (Nikon SMZ 1000) 
with filters GFP-L (ex. 480; em. 510) and GFP-B (ex.480; 
em. 535/50). Alternatively, the samples were monitored us-
ing a confocal microscope (Leica TCS 4D).

T r a n s f o r m a t i o n   o f   P .   v i t i c o l a   w i t h   
A .   t u m e f a c i e n s :  For transfer of the T-DNA from 
A. tumefaciens to P. viticola, 1 ml of bacterial suspension 
was added to 5 ml of water containing sporangia at a con-
centration of 1 x 106 sporangia·ml-1. After co-cultivation for 
5 h at 22 °C in the dark on a rotary shaker (30 rpm), the 
suspension containing both P. viticola and A. tumefaciens 

All the common genetic transformation methods have 
been successfully used to transform oomycetes. Chemi-
cal transformation was first described on protoplasted 
Phytophtora species (BAILEY et al. 1991, JUDELSON and 
MICHELMORE 1991) and has been much improved in the 
meantime (MCLEOD et al. 2006). Microprojectile bombard-
ment and Agrobacterium-mediated transformation were 
also successfully used to transform Phytophtora infestans 
with GUS (CVITANICH and JUDELSON 2003, VIJN and GOVERS 
2003). Electroporation is the most applied and successful 
technique to transform a large number of fungi and oomyc-
ete species. Using electroporation and specific vectors, 
several oomycetes such as Phytophtora (SI-AMMOUR et 
al. 2003), Pythium aphanidermatum (WEILAND 2003) and 
more recently Plasmopara halstedii (HAMMER et al. 2007) 
have been transformed.

The aim of this study was to develop a transformation 
system for the obligate biotrophic oomycete grape downy 
mildew. Here we present the results with electroporation, 
particle bombardment and Agrobacterium-mediated trans-
formation of P. viticola. 

Materials and Methods

P l a n t   m a t e r i a l :  Leaves of the grapevine 
cultivar Chasselas which is highly susceptible to downy 
mildew isolate NCCR1 (HAMIDUZZAMAN et al. 2005) were 
used for the experiments. Plants were grown from seeds 
(obtained from Syngenta, Stein, Switzerland) in 1.60 l pots 
containing TKS1 growing substrate (Klasmann Deilmann, 
Germany). The plants were cultivated in a growth chamber 
with a 16 h light/8 h dark period, 65 % relative humidity 
and 650 µE·m-2·s-1 illumination. 

S p o r e   p r o d u c t i o n   f o r   i n f e c t i o n   a n d   
t r a n s f o r m a t i o n :  P. viticola isolate NCCR1 was 
grown and maintained on 'Chasselas' leaves. Sporangia 
were harvested by suction from sporulating lesions with 
a disposable pipette tip (with filter) attached to a vacuum 
device. Sporangia that remained on the surface of the filter 
were transferred to a 1.5 ml Eppendorf tube and suspended 
in distilled water 30 min before transformation. For all the 
transformation procedures, sporangia were suspended in 
distilled water. Therefore, the final suspension consisted 
of a mixture of sporangia and sporangiospores. The high-
est obtainable sporangiospore concentration was reached 
about 30 min. after suspension of the sporangia. This time 
point was chosen for the electroporation since the absence 
of cell wall in sporangiospores favours transformation ef-
ficiency. Transformation efficiency was assessed by deter-
mining the ratio of fluorescent/non-fluorescent sporangia 
using a haemocytometer.

I n o c u l a t i o n   o f   g r a p e v i n e   l e a v e s :  Ten 
µl drops of sporangia suspension (2.4 x 106 sporangia·ml-1) 
were applied to the lower surface of detached leaves on hu-
mid filter paper and kept at high relative humidity in Petri 
dishes sealed with Parafilm in a growth chamber with a 
16 h light/8 h dark period and 650 µE·m-2·s-1 illumination.

H a r v e s t i n g   o f   t r a n s f o r m e d   s p o r a n g i a :  
Green fluorescing sporangia were harvested under low 
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was inoculated onto grapevine leaves. Twenty four hours 
later the leaves were rinsed with a solution containing 
200 μg·ml-1 cefotaxim to kill A. tumefaciens. During 10 d, 
the inoculate leaves were monitored for GFP fluorescence 
as mentioned above.

P a r t i c l e   b o m b a r d m e n t :  The prepara-
tion of 0.4 µm gold particles (BioRad) coated with plasmid 
P34GF was performed following the manufacturer’s proto-
col. Bombardment was performed with a Helios Gene Gun 
(Bio-Rad). The bombardment pressure was around 9 kPa 
according to CVITANICH and JUDELSON (2003) and the dis-
tance to target was 3 cm. 

Results

E l e c t r o p o r a t i o n :  A construct containing the 
ham34 promoter of the oomycete Bremia lactucae fused 
to the coding sequence of the gfp gene, P34GF, was in-
troduced into the P. viticola strain NCCR1 by electropora-
tion. Electroporation was performed 30 min after adding 
the sporangia suspension to the water because the number 
of released sporangiospores was highest at this time point 
(data not shown). Multiple variables associated with intro-
ducing DNA into P. viticola by electroporation were tested 
(Table). The best results were obtained by electroporating 
germinated sporangia 30 min after start of germination 
(500 µl of 2.4 x 106 sporangia·ml-1) with 15 µg of p34GF 
vector DNA at 550 V, 100 µF and 350 Ω pulse duration. 
The synthetic gfp gene used in this study was constructed 
to improve gfp expression in plants (PANG et al. 1996). The 
replacement of the serine at position 65 with a threonine 
yielded 100- to 120-fold brighter fluorescence than wild-
type gfp upon excitation with 490-nm light. Introducing the 
vector p34GF into sporangiospores of P. viticola resulted in 
a general fluorescence of the oomycete (Figs 1 and 2 a-d). 
Successful transformations using p34GF were already ob-
tained from the first experiment and the protocol described 
in material and methods was optimized until a maximal 
number of transformants was achieved. Because of consti-
tutive activity of the B. lactucae promoter, P. viticola could 
be visualized by fluorescence microscopy (Figs 1 and 2). 

T a b l e

Parameters tested and efficiency of Plasmopara viticola 
transformation by electroporation. To asses the transformation 
efficiency, voltage, resistance and capacitance of electroporation 
were varied. Efficiency was measured either by transformants per 

assay or per µg of vector DNA

Number of sporangia 2,.4x105 , 2.4x106 
and 2.4.x107

Voltage (V) from 350 to 800
Resistance (Ω) from 300 to 750
Capacitance (µF) from 25 to 700
Transformants per assaya 15 - 25
Transformants per µg of vector DNAa 1 – 1.66

a Minimum-maximum range taken from 45 experiments in 
    optimal conditions (550V, 100µF, 350 Ω )

Fig. 1: GFP expression in P. viticola during sporulation on 
grapevine leaves cv. 'Chasselas'. a, c, e: Micrographs of sporan-
giophores taken under blue light excitation U.V.+ filter GFP-L 
(EX 480/40; BA 510). b, d, f: Same as a, c, e, but under bright 
field. a-b: First generation of transformed P. viticola. c-d: Sec-
ond generation of transformed P. viticola. e-f: Third generation 
of transformed P. viticola. Arrows show transformed sporangia 
expressing gfp.

Fig. 2: Confocal images of grapevine cv. 'Chasselas' leaves infect-
ed with P. viticola expressing gfp. a, b, c, e: Confocal migrographs. 
d, f: Transmitted light of c and e. a: Arrow show sporangiophores 
initiation of P.viticola expressing gfp (P. viticola transformed by 
electroporation). b: Arrows show fluorescent structures of trans-
formed P. viticola (P. viticola transformed by electroporation) 
in a stomatal opening. c, d: Arrows show a sporangiophore of 
P. viticola (transformed by electroporation) expressing gfp. e, f: 
Arrows show hyphae of P. viticola expressing gfp on the surface 
of the leaf (P. viticola transformed with A. tumefaciens).
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Since P. viticola is an obligate biotroph, it cannot be grown 
in vitro. Therefore, the selection of transformants express-
ing gfp has to be performed visually. Fluorescent sporangia 
were sucked from leaves under a binocular dissecting mi-
croscope and U.V. light (Fig. 1 a, c, e) using a thin Pasteur 
pipette. Thus, the transformants expressing gfp were iso-
lated and taken to the fourth generation by transferring the 
fluorescent sporangia to new uninfected leaves of Chas-
selas. Over 4 generations the number of transformants ex-
pressing gfp was reduced by approximately 33 % at each 
generation. It was not possible to obtain a fifth fluorescing 
generation. These 4 generations were composed of trans-
formed and non transformed P. viticola (Fig. 1 a, c, e). As 
observed with the vast majority of transformed pathogens, 
the fitness of the gfp expressing organisms is often lower 
than the fitness of untransformed ones (SI-AMMOUR et al. 
2003) (data not shown). This might explain the observed 
delay in sporulation with our GFP-transformants (data not 
shown).

T r a n s f o r m a t i o n   w i t h   A .   t u m e f a-
 c i e n s : To establish an efficient transformation method 
for P. viticola with A. tumefaciens, we constructed the bi-
nary vectors Pb34 GF. It carries a T-DNA that contains the 
Ham34Pro-gfp-Ham34Ter cassette. A. tumefaciens strain 
GV 3101 containing Pb34 GF was co-cultivated with P. vit-
icola sporangia suspension during 2-4 h. This protocol was 
adapted from the method used to transform Phytophtora 
infestans by VIJN and GOVERS (2003). Due to the short life 
time of sporangiospores in suspension, it was difficult to 
increase the time of co-cultivation. Subsequently, the spo-
rangia suspension was used to inoculate grapevine leaves. 
Examination of the infected leaves by confocal micros-
copy revealed fluorescent structures of P.viticola growing 
inside the leaves (Fig. 2 b). Rarely, some fluorescent struc-
tures such as hyphae or sporangiophores were observed 
(Fig. 2 e). Although fluorescence of GFP was observed in 
the transformants, an efficient transfer of the fluorescent 
phenotype to the next generation of P.viticola failed. In-
duction of A. tumefaciens strains with acetosyringone did 
not enhance the transformation efficiency.

P a r t i c l e   b o m b a r d m e n t :  The grapevine 
leaves were inoculated 3-6 days before the bombardment 
to transform P. viticola at different developmental stages 
around the time of sporangiophore formation. Initials tests, 
aimed to establish the viability of P. viticola following 
bombardment at different development stages of develop-
ment showed that maximal recovery was achieved when 
leaves were bombarded 3 to 4 days after inoculation. This 
time point corresponds to the aggregation of hyphae in the 
substomatal cavity that will give rise to sporangiophores 
on the leaf surface. When the oomycete structures emerge 
from the stomata, nuclei are expected to be localised at this 
point and therefore should be hit more easily during the 
bombardment. The set of parameters tested for the trans-
formation of P. viticola through microprojectile bombard-
ment was adjusted according to previous investigations of 
fungi and oomycetes transformation (CHRISTIANSEN et al. 
1995, CVITANICH and JUDELSON 2003). The experiment 
was carried out with the plasmid P34GF but none of the 

emerging sporangiophores and sporangia following the 
bombardment were fluorescent. The new sporangia were 
used to inoculate new leaves but no GFP fluorescence was 
observed.

Discussion

GFP has been shown to be a useful tool serving as a 
reporter protein in many molecular biology studies and 
particularly as a vital marker for visualizing plant-patho-
gen interactions (SPELLIG et al. 1996, MAOR et al. 1998; 
BOTTIN et al. 1999, VAN WEST et al. 1999 a, LORANG et al. 
2001, SI-AMMOUR et al. 2003, HAMMER et al. 2007). The ex-
pression of β-glucuronidase (GUS) reporter gene in plant 
pathogenic fungi also allows to observe the interaction 
with plants (SNOEIJERS et al. 1999) but the major advan-
tage of GFP compared to GUS is that it allows the direct 
observation in living tissues without the addition of an ex-
ogenous substrate. 

Another advantage of pathogen-expressed GFP is 
the possibility to quantify the infection by measuring the 
emitted fluorescence (SI-AMMOUR et al. 2003). Micro-
scopic observation often call for long staining procedures 
(HAMIDUZZAMAN et al. 2005) although recently improved 
shorter methods have been described (DIEZ-NAVAJAS et al. 
2007). Methods based on Real Time PCR technology are  
an other possibility but they are quite expensive (VALSESIA 
et al. 2005). 

Here, we show that P. viticola is amenable to genetic 
transformation using different methods. However, no sta-
ble transformants could be generated. The reasons for the 
loss of fluorescence from the transformed P. viticola are 
still unclear and our data are not sufficient to explain this 
observation. It seems that neither deletion nor methylation 
are the causes of inactivation of integrated genes as it was 
shown for Phytophthora (JUDELSON and WHITTAKER 1995). 
According to VAN WEST et al. (1999b), this observation 
could be explained by an internuclear silencing process 
but it remains matter of speculation concerning our results. 
More surprising is the results obtained recently by GAULIN 
et al. (2007). They showed that a silencing construct in-
troduced into Phytophtora parasitica could be lost but the 
silencing process still worked. As it was shown by FOTH-
ERINGHAM and HOLLOMAN (1990) in true fungi, transgenes 
may be present in large extrachromosomal structures. The 
non-duplication of these structures could explain why the 
transgene has been lost during the next generations. 

In summary, our studies suggest that the promoter 
Ham34 is constitutive in P. viticola. The unstable inte-
gration of a transgene in P.viticola is similar to what has 
been observed recurrently during oomycete transforma-
tions (GAULIN et al. 2007, HAMMER et al. 2007, VAN WEST 
et al. 1999 b, JUDELSON and WHITTAKER 1995). Our results 
also demonstrate the possibility to transform P. viticola by 
using an electoporation method and an appropriate vector 
to study the gene functions during the life’s cycle and/or 
the infection process. A major problem during the trans-
formation of an obligate biotroph is the selection of trans-
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formants. Growing P. infestans in vitro transformed with 
the selectable marker gene neomycine phosphotransferase 
(nptII) allows the use of an antibiotic such as geneticin for 
the selection of transformants (SI-AMMOUR et al. 2003). In 
planta, the common antibiotics are usually toxic at use-
ful concentrations. One possibility would consist in using 
another selection system, for example, genetically modi-
fied plants resistant to an antibiotic such as kanamycin 
(BORNHOFF et al. 2005.) and a genetic construct carrying 
a selective marker resistance to kanamycin for oomycete 
transformation. Although generating transgenic grapevine 
is difficult and time consuming, this might represent a solu-
tion to improve the transformation efficiency of P. viticola 
because a selection pressure could be applied.

In conclusion, we feel that although generating trans-
genic grapevine is difficult and time consuming, this might 
represent a solution to improve the transformation effi-
ciency of P. viticola because a selection pressure could be 
applied. The higher efficiency observed with electropora-
tion is likely due to the absence of a cell wall in sporan-
giospores facilitating this procedure because permeability 
is achieved more easily. Additionally, electroporation is a 
rapid process and can be used on a sporangia suspension 
containing a high concentration of sporangiospores. The 
limiting parameter for the Agrobacterium-mediated trans-
formation is probably the prolonged period of incubation 
required to achieve gene transfer and in comparison the 
relatively short period of survival of sporangiospores in 
solution.  With the biolistic method, the projectiles have 
to either cross at the least the epidermal cell layer and the 
oomycete cell wall to reach their target, or at least to go 
through the cell wall of sporangia initials emerging from 
the stomata. Since not every hit also leads to a successful 
transformation, they are likely a very rare event in such a 
situation and might easily be overseen.
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