1,095 research outputs found

    Heat transfer investigation of Langley Research Center transition models at a Mach number of 8, volume 2

    Get PDF
    The results are presented of a wind tunnel test program to determine aerodynamic heat transfer distributions on delta body and straight body transition models of the space shuttle. Heat transfer rates were determined by the phase-change paint technique on Stycast and RTV models using Tempilag as the surface temperature indicator. The nominal test conditions were: Mach 8, length Reynolds numbers of 5 million and 7.4 million, and angles of attack of 20, 40, and 60 deg. Model details, test conditions, and reduced heat transfer data are included. Data reduction of the phase-change paint photographs was performed by utilizing a new technique

    The illusion of competency versus the desirability of expertise: Seeking a common standard for support professions in sport

    Get PDF
    In this paper we examine and challenge the competency-based models which currently dominate accreditation and development systems in sport support disciplines, largely the sciences and coaching. Through consideration of exemplar shortcomings, the limitations of competency-based systems are presented as failing to cater for the complexity of decision making and the need for proactive experimentation essential to effective practice. To provide a better fit with the challenges of the various disciplines in their work with performers, an alternative approach is presented which focuses on the promotion, evaluation and elaboration of expertise. Such an approach resonates with important characteristics of professions, whilst also providing for the essential ‘shades of grey’ inherent in work with human participants. Key differences between the approaches are considered through exemplars of evaluation processes. The expertise-focused method, although inherently more complex, is seen as offering a less ambiguous and more positive route, both through more accurate representation of essential professional competence and through facilitation of future growth in proficiency and evolution of expertise in practice. Examples from the literature are also presented, offering further support for the practicalities of this approach

    A-STAR: The All-Sky Transient Astrophysics Reporter

    Full text link
    The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.Comment: Accepted for the European Astronomical Society Publications Series: Proceedings of the Fall 2012 Gamma-Ray Burst Symposium held in Marbella, Spain, 8-12 Oct 201

    Transistor and Diode Studies

    Get PDF
    Contains reports on two research projects.Lincoln Laboratory (Purchase Order DDL-B187)Department of the ArmyDepartment of the NavyDepartment of the Air Force under Contract AF19(122)-45

    The effect of nose geometry on the aerothermodynamic environment of shuttle entry configurations

    Get PDF
    The effect was studied of nose geometry on the transition criteria for the windward boundary layer, on the extent of separation, on the heat transfer perturbation due to the canopy, and on the surface pressure and the heat transfer in the separated region. The data for each of these problems is analyzed. A literature review that concentrates on separation and the leeward flow-field is presented

    Blaming Bill Gates AGAIN! Misuse, overuse and misunderstanding of performance data in sport

    Get PDF
    Recently in Sport, Education and Society, Williams and Manley (2014) argued against the heavy reliance on technology in professional Rugby Union and elite sport in general. In summary, technology is presented as an elitist, ‘gold standard’ villain that management and coaches use to exert control and by which players lose autonomy, identity, motivation, social interactions and expertise. In this article we suggest that the sociological interpretations and implications offered by Williams and Manley may be somewhat limited when viewed in isolation. In doing so, we identify some core methodological issues in Williams and Manley’s study and critically consider important arguments for utilising technology; notably, to inform coach decision making and generate player empowerment. Secondly, we present a different, yet perhaps equally concerning, practice-oriented interpretation of the same results but from alternative coaching and expertise literature. Accordingly, we suggest that Williams and Manley have perhaps raised their alarm prematurely, inappropriately and on somewhat shaky foundations. We also hope to stimulate others to consider contrary positions, or at least to think about this topic in greater detail. More specifically, we encourage coaches and academics to think carefully about what technology is employed, how and why, and then the means by which these decisions are discussed with and, preferably, sold to players. Certainly, technology can significantly enhance coach decision making and practice, while also helping players to optimise their focus, empowerment and independence in knowing how to achieve their personal and collective goals

    Clinical and service implications of a cognitive analytic therapy model of psychosis

    Get PDF
    Cognitive analytic therapy (CAT) is an integrative, interpersonal model of therapy predicated on a radically social concept of self, developed over recent years in the UK by Anthony Ryle. A CAT-based model of psychotic disorder has been developed much more recently based on encouraging early experience in this area. The model describes and accounts for many psychotic experiences and symptoms in terms of distorted, amplified or muddled enactments of normal or ‘neurotic’ reciprocal role procedures (RRPs) and of damage at a meta-procedural level to the structures of the self. Reciprocal role procedures are understood in CAT to represent the outcome of the process of internalization of early, sign-mediated, interpersonal experience and to constitute the basis for all mental activity, normal or otherwise. Enactments of maladaptive RRPs generated by early interpersonal stress are seen in this model to constitute a form of ‘internal expressed emotion’. Joint description of these RRPs and their enactments (both internally and externally) and their subsequent revision is central to the practice of CAT during which they are mapped out through written and diagrammatic reformulations. This model may usefully complement and extend existing approaches, notably recent CBT-based interventions, particularly with ‘difficult’ patients, and generate meaningful and helpful understandings of these disorders for both patients and their treating teams. We suggest that use of a coherent and robust model such as CAT could have important clinical and service implications in terms of developing and researching models of these disorders as well as for the training of multidisciplinary teams in their effective treatment

    Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes

    Get PDF
    Light-driven enzymatic catalysis is enabled by the productive coupling of a protein to a photosensitizer. Photosensitizers used in such hybrid systems are typically costly, toxic, and/or fragile, with limited chemical versatility. Carbon dots (CDs) are low-cost, nanosized light-harvesters that are attractive photosensitizers for biological systems as they are water-soluble, photostable, nontoxic, and their surface chemistry can be easily modified. We demonstrate here that CDs act as excellent light-absorbers in two semibiological photosynthetic systems utilizing either a fumarate reductase (FccA) for the solar-driven hydrogenation of fumarate to succinate or a hydrogenase (H2_{2}ase) for reduction of protons to H2_{2}. The tunable surface chemistry of the CDs was exploited to synthesize positively charged ammonium-terminated CDs (CD-NHMe2_{2}+^{+}), which were capable of transferring photoexcited electrons directly to the negatively charged enzymes with high efficiency and stability. Enzyme-based turnover numbers of 6000 mol succinate (mol FccA)−1^{-1} and 43,000 mol H2_{2} (mol H2_{2}ase)−1^{-1} were reached after 24 h. Negatively charged carboxylate-terminated CDs (CD-CO2_{2}−^{-}) displayed little or no activity, and the electrostatic interactions at the CD–enzyme interface were determined to be essential to the high photocatalytic activity observed with CD-NHMe2_{2}+^{+}. The modular surface chemistry of CDs together with their photostability and aqueous solubility make CDs versatile photosensitizers for redox enzymes with great scope for their utilization in photobiocatalysis.This work was supported by a Cambridge Australia Poynton PhD scholarship (to G.A.M.H.), the BBSRC (BB/K010220/1 to E.R. and BB/K009885/1 to J.N.B.), an Oppenheimer PhD scholarship (to B.C.M.M.), and a Marie Curie postdoctoral fellowship (GAN 624997 to C.A.C.)

    Transistor and Diode Studies

    Get PDF
    Contains reports on four research projects.Lincoln Laboratory (Purchase Order DDL-B187)United States Department of the ArmyUnited States Department of the NavyUnited States Department of the Air Force (Contract AF19(122)-458
    • 

    corecore