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INTRODUCTION

In order to determine the convective heat-transfer distribution for the

nose region of the space shuttle entry configurations, one must describe the

three-dimensional flow-field, which may include extensive regions of separated

flow. Because of the complexity of the flow field for the nose region, ex-

perimental data are needed to define the relation between the nose geometry

and the resultant flow-field. The objectives of the present program were to

study the effect of nose geometry on the transition criteria for the windward

boundary-layer, on the extent of separation, on the heat-transfer perturbation

due to the canopy, and on the surface pressure and the heat transfer in the

separated region. Although the present report will analyze the data for infor-

mation relating to each of these problems, the literature review, which forms

the principal part of the Introduction, will concentrate on separation and the

leeward flow-field.

Types of Flow Separation

A necessary condition (Ref. 1) for separation of the viscous boundary

layer from the wall is increasing pressure in the streamwise direction, i.e.,

an adverse pressure gradient along the flow path. In general, the separation

location depends upon geometric parameters, such as configuration geometry

and angle-of-attack, and upon flow parameters, such as free-stream Mach

number, Reynolds number, and the wall temperature.

Using solutions of the incompressible, laminar boundary-layer near the

symmetry plane of an inclined prolate-spheroid, Wang studied three-dimensional

I
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separation patterns (Refs. 2 through 4). Whereas two-dimensional boundary-

layer separation corresponds to the vanishing of skin friction, it is not

necessary that the two components of skin friction vanish for three-dimensional

separation. Two basic separation concepts were identified: a bubble-type

separation and a free-vortex layer. Sketches of the two types of separation

are presented in Fig. 1. The bubble-type separation is characterized by zero

skin-friction at the separation line with subsequent reversal of the streamwise

velocity direction. For the free-vortex-layer separation, Wang (Ref. 4) noted

that the circumferential component of the velocity close to the body is reversed,

but that the direction of the meridional velocity remains unchanged.

The boundary-layer solutions of Wang for flow over a prolate spheroid

indicate that the separation pattern is essentially a bubble type for low

incidence cases (alpha approximately 30) and for extremely high incidence cases

(alpha greater than 40°). For intermediate alphas, Wang (Ref. 4) states that

"there are at least two stages of separation. A free vortex layer type of

separation occurs first, followed by a bubble type of more conventional nature."

Surface-pressure measurements, oil-flow patterns, and pitot-pressure

surveys (Refs. 5 through 7) indicate a free-vortex-layer type of separation

for hypersonic flow past a blunt cone at alphas between 60 and 180. The oil

from the windward region was found to flow around the cone, turning toward

the rear of the cone as it approaches the separation line. At the separation

line, the oil accumulated and proceeded to travel down the separation line to

the rear of the cone. The circumferential component of the flow which was

initially directed toward the leeward plane of symmetry reversed direction.

Two symmetrical separation lines developed downstream of the region where the

circumferential component of skin friction passed through zero. The fact that
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the oil near the leeward plane of symmetry continued to flow from the attached

region, through the region of zero lateral skin friction, and into the vortex

region indicated the longitudinal component of skin friction was always finite.

This separation model, which is presented in Fig. 1, contains symmetrical,

supersonic, helical vortices close to the surface with an attachment line on

the most leeward ray. At angles-of-attack greater than those necessary to

equalize the cone base-pressure and the leeward pressure, the leeward flow ex-

panded to pressure levels below the base pressure and a secondary separation

occured on the rear portion of the cone's leeward surface, which appeared to

contain subsonic reverse flow (Ref. 8). This separation flow-field would be

similar to the two stage solutions of Wang, i.e., a vortex-layer separation

followed by a bubble type.

The Separated Flow Field

Using pitot-pressure measurements obtained with the axis of the probe

parallel to the direction of the free-stream velocity, Stetson (Ref. 7) found

no evidence of imbedded shocks in the leeward flow-field of a slender, sharp

cone at an alpha of 100. Using pitot-pressure measurements and schlieren

photographs, Feldhuhn et al (Ref. 9) observed imbedded shock waves which were

associated with separation and recompression in the leeward flow-field of a

slender, sharp cone at an alpha of 24° . It is possible that the imbedded

shock-waves observed by Feldhuhn et al are due to increased cross-flow at the

higher angle-of-attack. However, it is also possible that the detection of the

imbedded shock-waves is due to improved instrumentation.

The flow mechanism of greatest importance to the surface environment in
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the separated region is the free-vortex layer. Reattachment of the vortical

flow results in high heating-rates to the leeward surface, with local heat-

transfer coefficients.often exceeding the zero angle-of-attack values. The

relatively high leeward-heating has been experimentally observed by Maise

(Ref. 10) for circular cones, by Whitehead (Ref. 11) for delta-wings, and by

Hefner and Whitehead (Refs. 12 and 13) for space-shuttle orbiter configurations.'

A "featherlike" pattern having its axis in the leeward plane-of-symmetry

appears in the oil-flow patterns on shuttle orbiter configurations. Hefner

and Whitehead noted that the feather pattern indicates a region of high shear

caused by-the impingement of the vortices onto the lee surface. The thinning

of the viscous shear-layer as a result of the outflow caused by these vortices

produces the relatively high leeward heating rates. Whitehead et al (Ref. 14)

proposed a three-zone viscous-flow model to describe the interaction of the

vortex with the flow in the vicinity of the lee meridian. The three zones of

the leeward flow were: (1) the apex region characterized by an inward boundary-

layer flow apparently free of vortex effects, (2) a region dominated by a vortex

system which draws off the boundary layer at the center line and leaves a

characteristic "feather" surface-flow pattern, and (3) the downstream region

where a new boundary layer which develops in the center region splitting the

feather pattern into symmetrically disposed surface traces. Hefner and

Whitehead (Ref. 13) found that the leeward surface-pressures were insensitive

to the effects of the vortices.

The Effect of Geometry on the Separated Flow-Field

A desirable geometry is one which would minimize the effect of the



reattachment of the vortical flow, which causes the high heating-rates to the

leeward surface. Rao (Ref. 15) found that the vortex-induced peak-heating on

the leeside of a delta-wing could be virtually eliminated by aligning the

apex region with the free-stream, i.e., "nose droop". Whitehead and Bertram

(Ref. 16) found that the vortex-induced peak-heating on the leeside of a delta

wing could be reduced by properly contouring the leading-edge planform.

Hefner and Whitehead (Ref. 13) found that the heat transfer to the lee

surface of shuttle-like noses could be reduced by modifying the upper-surface

geometry to induce vortex lift-off. The side view geometry was modified by

increasing the initial slope of the lee meridian and then breaking it sharply,

which reduced the heating level significantly along 50% of the leeward meridian.

Although the separated flow-field was probably modified by the presence

of the model support sting in the upstream wake, thermocouple data obtained

using cylindrical models showed that the cross-section had a significant effect

on the heat-transfer in the separated region (Ref. 17). For the four cylindrical-

models considered, the average heat-transfer rate in the separated region was a

minimum for the cross-section which was approximately rectangular and was a

maximum for the cross-section which was circular. The leeward heat-transfer

data were correlated in terms of a single geometric parameter, i.e., the ratio

of the distance which is the complement of the development length for the re-

circulating flow to the width of the wake at separation.

The Effect of Test Conditions on the Separated Flow-Field

As discussed, the high heat-transfer rates measured in the separated re-

gion of the shuttle configurations are due to an interaction between the vortices



(;

and the upper-surface boundary-layer. It is not surprising, therefore, that

the lee-surface heat-transfer measurements are dependent on the Reynolds number.

A Reynolds-number dependence is evident in the heat-transfer measurements from

the pitch plane of an MRS configuration (Ref. 18). For alphas from 200 to 50° ,

the nondimensionalized heat-transfer values obtained for a unit free-stream

Reynolds number of 0.3 x 106 are significantly lower than those obtained for

unit free-stream Reynolds numbers of 1.0 x 106, 1.7 x 106, and 2.4 x 10 (for

which the heat-transfer values are approximately the same). For alphas of 550

and 600, the low-Reynolds-number heating values increased to the levels measured

at the other Reynolds numbers. These data suggest the existence of a "threshold"

Reynolds number (which depends on the angle-of-attack), where a marked change in

the flow field occurs.

Hefner and Whitehead (Ref. 13) discussed a "threshold" Reynolds number where

the peak heat-transfer to the lee meridian of a delta-wing orbiter at an alpha of

200 decreased abruptly. Although the heat-transfer distributions below this

Reynolds number did not exhibit a peak, the oil-flow patterns still showed the

featherlike reattachment pattern. Leeside heat-transfer data obtained over the

same Reynolds-number range, but at an alpha of 350, showed no abrupt decrease in

peak heating. Thus, the test Reynolds numbers apparently are above the threshold

value for this higher angle-of-attack.

Hefner and Whitehead (Ref. 13) have considered the effect of the free-stream

Mach number on the leeward heat-transfer. Lee-surface heating-data were obtained

at free-stream Mach numbers of 6 and 19. The heat-transfer measurements obtained

at a Mach number of 19 for alphas of 200 and 370 showed no heating peaks and were

significantly lower than the corresponding data obtained at a Mach number of 6.



The data were considered insufficien-l-t to define Mach number efftects on hle lee-

ward heating, since the Reynolds number influence is interrelated with Mach

number.

The present investigation considered the effect of nose geometry on the

aerothermodynamic environment for shuttle entry-configurations. Heat-transfer

-data, oil-flow patterns, and shadowgraphs were obtained in Tunnel B of AEDC

for two 0.019-scale orbiter configurations. Surface-pressure data, oil-flow

patterns, and schlieren photographs were obtained in the University of Texas

Supersonic Wind Tunnel for 0.0047-scale models. Furthermore, because of the

limited size of the test section, the University models represented only the

nose region of the two orbiter configurations. The range of test conditions

included free-stream Mach numbers of 5 and 8 with free-stream Reynolds numbers

based on model length from 1.5 x 10 to 1.2 x 10 . Data were obtained for

alphas from 20° to 50° . The surface-pressure and heat-transfer measurements

from the windward pitch-plane are compared with theoretical values. Boundary-

layer transition parameters, which were determined using the pitch-plane heat-

transfer distributions, are compared with existing criteria. Additional data

are discussed in relation to the governing flow-mechanisms.



NOMENCLATURE

h

ht,R=l ft.

L

M
e

M

p

Pt2

Re
X, tr

Re/ft
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x
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z
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0
w

ref

pk

- local heat-transfer coefficient

- calculated heat-transfer coefficient for the stagnation
point of a one-foot sphere scaled to model size

- total model length, measured along the fuselage axis

- local Mach number at the edge of the boundary layer

- free-stream Mach number

- local static pressure

- stagnation pressure behind a normal shock

- Reynolds number based on local flow properties and the
axial length to transition

- unit Reynolds number based on local flow properties

- Reynolds number based on local flow properties and the
momentum thickness

- free-stream Reynolds number based on model length

- wall temperature

- stagnation temperature

- axial coordinate, refer to Fig. 2

- axial length to transition

- depth coordinate, refer to Fig. 2

- transverse coordinate, refer to Fig. 2

- angle of attack

- circumferential coordinate

- local inclination of the shock wave

- local inclination of the wall relative to the x-axis

Subscripts

- reference value

- peak value
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EXPERIMENTAL PROGRAM

Th- experimental program was conducted to study the effect of nose

geometry on the transition criteria for the windward boundary-layer, on the

extent of separation, on the heat-transfer perturbation due to the canopy,

and on the surface pressure and the heat transfer in the separated region.

The parameters of the program included nose geometry, Reynolds number, and

angle-of-attack. Heat-transfer data, oil-flow patterns, and shadowgraphs

were obtained in Tunnel B of AEDC for two shuttle entry-configurations. Aft

of the station where the wing-root fairing intersected the fuselage (x = 0.4L),

the configurations were identical. Surface-pressure data, oil-flow patterns,

and schlieren photographs were obtained in the University of Texas Supersonic

Wind Tunnel (UT SWT). Because of the limited size of the test section, the

University models were of smaller scale and represented only the nose region

of the two orbiter configurations. Thus, surface-pressure distributions,

heat-transfer distributions, and flow-visualization photographs were obtained

to help define empirically the flow-field for the two configurations.

Models

The model design philosophy was to generate nose configurations whose

surface geometry could be described by analytic functions. The top view plan-

forms were to include both relatively blunt and relatively slender geometries.

The cross-section geometries were to provide different cross-flow pressure

gradients on the windward surface and different separation patterns on the

leeward surface. Because of the considerable cost of a "large" scale heat-transfer



10

model, only two configurations could be built. To satisfy the design philos-

ophy objectives with two models, it was necessary to incorporate an acceptable

"extreme'' for each of the geometric parameters in one model or in the other.

Since only the fuselage was to be instrumented, the wing geometry was the same

for both configurations.

Configuration geometry. - Since only two models were built, their profiles were

the same (except for a slight difference in the canopy), so as not to introduce

yet another geometric variable. The z-dimension of the fuselage was a maximum

in the horizontal plane containing the apex of the nose. This (y = O) plane

intersected the cross-section at x = 0.4L such that the distance to the keel

was one fourth of the total vertical dimension at this station. For the pre-

sent report, that portion of the model upstream of station x = 0.4L is de-

signated as the nose. The downstream portion of the model is termed the fuse-

lage. The geometry of the fuselage (and of the wings) was the same for both

configurations.

The geometry of the delta wing is illustrated in Fig. 2. The wings,

which were not instrumented, were made of 17-4 PH stainless steel. The sym-

metrical airfoil section, which had a thickness ratio of approximately 0.07,

was inclined 1.50 to the model axis. Other pertinent geometric parameters of

the wing are as follows.

Leading-edge sweepeA 49002'

Trailing-edge sweep 4059 '

Wing dihedral 70

Exposed root-chord length 1.26 ft.

Exposed semi-span 0.70 ft.

Aspect ratio 1.2
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With the exception of the canopy surface and the surface fairings of the

wing-root region, the nose geometries can be described by "analytical functions".

The analytic functions which define the contours for the two, "clean" config-

urations are discussed in Appendix A. The actual configurations, which are

discussed below, are illustrated in Figs. 2 through 5.

(a) UTN2. - The relatively blunt planform, the relatively flat windward surface

(to reduce the cross-flow pressure gradients), and a leeward geometry which was

intended to fix boundary-layer separation were incorporated into the UTN2 con-

figuration as shown in Fig. 3. The apex of the planform in the y = 0 plane is

a 5:2 ellipse. The windward surface was generated by a parallel translation

of the ellipse tangent to the leading edge of the keel. Thus, taking a section

in the xz-plane, the trace of the windward surface is a 5:2 ellipse (possibly

modified at the downstream end by the wing-root fairing). Because of the rela-

tively blunt character of the windward nose, the wing-root fairing requires

only a slight contour modification. In the absence of the canopy, the cross

sections of the leeward surface, i.e., y negative, consist of a circular arc,

a linear element, and a very flat ellipse. The elements are tangent to each

other to avoid sharp corners upstream of x = 0.25L. The inclination angle

between the linear element and the y-axis is a linear function of x, varying

from 250 at x = 0.02L to 150 at x = 0.16L and subsequently varying with x so

that the inclination angle is 00 at x = 0.38L. The canopy geometry is indica-

ted in the cross-sections of Fig. 3.

(b) UTN7. - As shown in Fig. 4, the UTN7 configuration has the more slender

planform and elliptic cross-sections. The apex of the planform in the y = 0

plane is a 4:1 ellipse. The basic cross-sections (i.e., the cross-sections

without the canopy and the wing-root fairing) are composed of two semi-ellipses.
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The semi-axis ratios for both the windward ellipse and the leeward ellipse

are uniquely defined by the maximum y- and z- coordinates for the section at

a given station. The canopy geometry and the wing-roct fairing modify these

elliptic cross-sections, as can Lbe seen in Fig. 4. Because both nose con-

figurations were designed to fair into a common fuselage at station x = 0.38L,

the wing-root fairing represented considerable modification of the basic cross-

sections for the slender UTN7-configuration.

AEDC models. - The two 0.019-scale models used in Tunnel B of AEDC were built

by Micro Craft, Inc. Electroformed nickel deposited on a male mandrel yielded

a single surface (with no joints) for the nose-configuration:aft-fuselage sur-

face. The composition of the resultant shell, which was roughly 0.032-in.

thick, was 0.985 nickel, 0.010 cobalt, with traces of aluminum, iron, and

silicon. In order to have access to the model interior, the leeward surface

of the aft fuselage was made into an access panel. Thus, there was no nose:

fuselage junction on the windward surface, which could promote boundary-layer

transition.

Photographs of three views of each of the AEDC models are presented in

Fig. 5. As can be seen in the side-view photograph, the pitch-plane radius-of-

curvature of the windward keel is a smoothly varying function of x. This was

done to avoid inflection points in the shock wave, which would tend to promote

boundary-layer transition (Ref. 19). For x < 0.4L, the curves describing the

windward pitch-plane geometry are an ellipse which is tangent (at x = 0.19L)

to a straight line, inclined 30 to the x-axis.

The photographs also clearly illustrate the "jowls" which are formed when

a nose region with a rounded windward surface is faired into a flat-bottomed
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fuselage. The complex, concave surface which is formed by this wing-root

fairing in the region from x = 0.3L to x = 0.4L had a marked effect on the

windward flow-field, as will be discussed later.

Temperature histories of the thin nickel-skin were obtained using the

101 30-gage chromel-alumel thermocouples which were located as shown in Figs.

3 and 4. The local heat-transfer coefficients were computed using the tem-

perature histories in the relation: Tt - Twi

d [ln ( w T
t w

h = m c (1)
p

dt

where m is the product of the model-skin density times the model-skin thickness,

T is the wall temperature, and T wi is the initial wall temperature. An experi-
w

mental program was undertaken to measure the specific heat of the model skin.

However, the experimental values obtained by the contractor differed signifi-

cantly from the tabulated values. Thus, a subsequent exercise was undertaken

by personnel from AEDC to obtain additional measurements of the specific heat

of the model skin. The measured values of specific heat obtained by the AEDC

personnel were in satisfactory agreement with the literature values. Therefore,

the specific heat of the model skin was assumed to be:

-4 -7 2
c = 0.1467 - (2.173 x 10 ) T + (3.367 x 10 ) T
p w w

- (1.332 x 10 ) T 3 Btu/lbm OR (2)

which is a fit of the data for specific heat presented in Ref. 20.

Post-test examination of the UTN2 revealed an undulation in the vicinity

of x = 0.4L. Whereas the specified slope of the model pitch-plane was to be

a constant 30 in this region, careful post-test measurements of the y coordinate
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indicated the slope varied from the design value of 30 to 1°, then to 6° ,

before returning to 30. A comparison of the post-test measurement of the

windward surface angles and the design values is presented in Fig. 6. The

difference between the actual surface and the design contour was so small

that it could not be illustrated on the scale of Fig. 4. Although the cause

of the wrinkle is undetermined, it apparently occurred either after Group 22

or after Group 23. Since Group 24 and Group 25 are repeats of earlier test

conditions, i.e., Group 20 and Group 23, respectively, these data are pre-

sented in Fig. 7 and 8. A single symbol indicates the heat transfer for that

thermocouple was essentially the same for both runs. At an alpha of 200, the

heat-transfer distribution in the windward pitch plane is affected; being rela-

tively low at the thermocouple in the "concave" region (x = 0.4L) and relatively

high at downstream locations. At an alpha of 500, the windward pitch-plane

heat-transfer data were not affected by the surface change with the exception

of the measurements at the wrinkle (x = 0.4L) and possibly those at x = 0.5L.

The differences between the heat-transfer measurements at these two thermocouples

suggest that the wrinkle occurred between the two runs. However, the distributions

(with the relatively low heating at x = 0.5L) suggest that the wrinkle occurred

prior to the two runs. As can be seen in Fig. 8, the surface undulation had no

discernable effect on the leeward heat-transfer data at either angle of attack.

This is not surprising, since the large favorable pressure gradient at the chine

line would be expected to isolate any disturbance on the windward surface.

University models. - For the tests in the UT SWT, 0.0047-scale models of the

nose region of the UTN2 and the UTN7 were built. Using the cross-sections of

the AEDC models, a mandrel of balsa and a female mold of RTV were made prior
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to casting the actual plastic pressure models. The models, which were made

of polystyrene casting resin, were instrumented with pressure taps as shown

in Figs. 9 and 10. The geometry of the UTN7 pressure- odel differed slightly

from the geometry of the heat-transfer model. The difference is primarily

due to the fact that the cross-sections were not exactly aligned in the original

model drawings supplied to the University. The misaligned cross-sections con-

tributed to the slight "hump" on the leeward surface, which can be seen immediately

downstream of the aft-end of the canopy in Fig. 10. Although the magnitude of

the hump is small (approximately 0.02 inch), the local pressure seemed signifi-

cantly high. Another pressure model, whose geometry matches that of the heat-

transfer model (for which the cross-sections were aligned), has been built and

will be tested soon.

Test Facilities

Tunnel B of AEDC. - Tunnel B is a continuous, closed circuit, variable density

wind tunnel with an axisymmetric, contoured nozzle and a 50-inch diameter test

section. The tunnel can be operated at a nominal Mach number of 6 or 8 at

stagnation pressures from 20 to 300 and 50 to 900 psia, respectively, with

stagnation temperatures up to 13500 R. The model may be injected into the tunnel

for a test run and then retracted for model cooling or for model changes which

can be made without interrupting the tunnel flow.

The UT SWT. - This tunnel is of the blowdown type, capable of run times from

two to four minutes. The air is accelerated to a free-stream Mach number of 5

through a two-dimensional nozzle to a 6-in. x 7-in. test section. Stagnation

pressures range from 225 psia to 400 psia. Although stagnation temperatures

up to 10000 R are possible (for heat-transfer tests), these pressure data were

obtained with a stagnation temperature of approximately 5800R.
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Test Program

The test conditions for the experimental programs conducted in Tunnel B

and in the UT SWT are presented in Table 1 and in Table 2, respectively. Heat-

transfer data were obtained in Tunnel B at a free-stream Mach number of 8 over

a range of Reynolds numbers based on model length from 1.5 x 106 to 7.8 x 106

for alphas from 200 to 500. The pressure data from the UT SWT were obtained

at a free-stream Mach number 5 for alphas from 200 to 500. So that the

tabulated Reynolds number would be comparable, the length Reynolds number for

the UT tests is based on the length which would exist if the entire configura-

tion were simulated. The range of Reynolds number for the UT SWT tests

based on this "effective" model length is 6 x 106 to 12 x 106. Additional

tests in the pressure program are planned. These data will appear in the final

contract documentation (scheduled for August 1973).
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DISCUSSION

The objectives of the present program were to study the effect of nose

geometry on the transition criteria for the windward boundary-layer, on the

extent of separation, and on the surface pressure and the heat transfer in

the separated region (noting the heat-transfer perturbation due to the canopy).

The presentation of the data and their analysis will, therefore, be divided into

three sections: the windward flow-field; the circumferential distributions, and

the leeward flow-field.

The Windward Flow-Field

As indicated previously, the jowls formed by the complex, concave fairing

markedly affected the windward flow-field. The windward flow-field near the

plane-of-symmetry included:

(1) an interaction between the boundary layer and a shock wave generated

in the corner formed by the jowls, and

(2) a thickening of the downstream boundary-layer as the jowls funnel

the flow toward the plane of symmetry.

Still further downstream, the heat-transfer data indicate the effects of

cross flow and of boundary-layer transition on the flow field. The strength

of a particular phenomenon is dependent on the configuration and on the angle-

of-attack.

The flow-visualization photographs, which are presented in Fig. 11 for the

UTN7 at an alpha of 350, graphically illustrate these phenomena. A jowl-generated

shock-wave, which can be seen in the shadowgraph, crosses the nose at approxi-

mately x = 0.3L. The oil-flow pattern illustrates the effect of the shock:

boundary-layer interaction and of the funneling of flow toward the pitch plane.



An accumulation of oil is evident at an x of dpproximately 0.3L, i.e, whlere

the jowl-generated shock-wave crosses the body. As indicated by the oil-flow

patterns, the presence of the jowls affects the flow over an extensive region

of the windward surface, specifically from an x of approximately 0.25L to an

x of approximately 0.5L. This should not be surprising, since an extensive

fillet was required to fair from the relatively round nose-region cross-section

into the flat-bottomed fuselage (refer to Fig. 5).

The effect of these flow phenomena is also evident in the heat-transfer

and in the surface-pressure distributions for the pitch plane of the UTN7.

These data are presented in Fig. 12 for an alpha of 30° . The surface-pressure

increase, which occurs downstream of x = 0.3L, is attributed to the shock wave.

Due to the shock:boundary-layer interaction, the heat transfer initially in-

creases (from x = 0.3L to x = 0.36L). The subsequent decrease in heat transfer,

which is measured at the thermocouples from x = 0.425L to x = 0.5L, is attributed

to the thickened boundary-layer as the flow is funnelled toward the plane-of-

symmetry. Downstream of x = 0.5L, the experimental heat-transfer coefficients

increase with Reynolds number. These heat-transfer data indicate the onset of

boundary-layer transition.

The oil-flow pattern for the windward surface of the UTN2 at an alpha of

350 (Fig. 13) is similar to that for the UTN7. However, because of the rela-

tively flat windward-surface of the UTN2 nose, the fillet represents only a

modest change in the cross-sections (refer to Fig. 5). Therefore, it is not

surprising that the oil-flow patterns show a perturbed region of only limited

extent. Nevertheless, there is a marked accumulation of oil, as was associated

with the jowl-generated shock-wave for the UTN7. The surface-pressure and the

heat-transfer distributions for the pitch plane of the UTN2 at an alpha of 30°

(Fig. 14) do not indicate either a shock-induced increase or a subsequent de-

crease as the boundary layer thickens. Thus, although the oil-flow patterns
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are roughly similar for the two configurations, the jowl-induced perturbations

in surface pressure and in heat transfer which were observed for the UTN7 were

not evident in the UTN2 data. Downstream of x = 0.4L, the heat-transfer data

depend on the Reynolds number, indicating the onset of transition. Thus,

transition occurs earlier on the relatively flat-bottomed configuration. Any

conclusion regarding the significance of the cross-flow parameter on transition

is masked, because the onset of transition is affected by cross-flow, by the shock:

boundary-layer interaction and by the slight surface undulation of the UTN2.

The jowl-generated shock-waves are also evident in the pitch-plane shadow-

graphs, which are presented for an alpha of 200 (Fig. 15) and for an alpha of

300 (Fig. 16). Whereas the shock-wave trace is visible on the windward side for

both configurations at both alphas, a leeward trace of the jowl-generated shock-

wave is evident only for the UTN7 at an alpha of 300 (Fig. 16b). No locally

high heat-transfer coefficients were evident in the data from the leeward plane-

of-symmetry (i.e., the leeward pitch-plane) for the UTN7 at an alpha of 300° .

Thus, although a shock trace is evident on the leeside, the jowl-generated

shock-wave apparently did not affect the viscous flow which governs the leeward

heating.

A canopy-generated shock-wave occurs for both configurations at an alpha

of 200 but not for an alpha of 300. Although the shadowgraphs are not presented

herein because they were obtained at another Reynolds number (refer to Table 1),

a canopy-generated shock-wave was evident for both configurations at an alpha of

250°.

Pitch-plane correlations. - The experimentally determined heat-transfer coef-

ficients for the windward pitch-plane are compared with the theoretical distribu-

tions for the UTN2 and for the UTN7 in Figs. 17 and 18, respectively. Theoretical
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distributions are presented for a two-dimensional laminar boundary-layer, for

a laminar boundary-layer with cross-flow, and for a two-dimensional turbulent

boundary-layer. The flow-field t chniques used to obtain the theoretical

correlations are described in Appendix B. The theoretical heat-transfer dis-

tributions are independent of Reynolds number for laminar flow, but not when

the boundary layer is turbulent. Thus, heat-transfer-coefficient distributions

have been calculated for a turbulent boundary-layer at two different Reynolds

numbers. The heat-transfer data for the UTN2 (Fig. 17) indicate that the

boundary layer was laminar upstream of x = 0.3L for all angles-of-attack over

the range of Reynolds numbers tested. At an alpha of 20° , the laminar heat-

transfer data agree with the calculations for a two-dimensional boundary-layer,

indicating that appreciable cross-flow has not yet developed. At the higher

angles-of-attack, the measurements approach the calculated values which account

for cross-flow.

The heat-transfer data for the UTN2 indicate the onset of boundary-layer

transition occurs between x = 0.3L and x = 0.4L. When the onset of transition

occurs in this interval, the location depends on the Reynolds number and on

the angle-of-attack. However, the wrinkle in the model skin which occurred in

the vicinity of x = 0.4L (although relatively small) apparently acted as a

transition-fixing element. At the highest Reynolds number tested, i.e.,

Re = 7.8 x 10 , the downstream heat-transfer data indicate transition to
",L

fully turbulent boundary-layer occurs at all alphas. The length over which the

experimental values agree approximately with the theoretical values for aI tur-

bulent boundary-layer increases as the angle-of-attack increases. At the lowe;l

Reynolds-number tested, i.e., Re = 1.6 x 10 , the downstream heat-transfer
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data do not even approach the theoretical values for a fully turbulent boundary-

layer. Thus, at the lowest Reynolds-number tested, the boundary-layer appears

to remain laminar downstream of x = 0.4L. However, the experimental coefficients

in this region are considerably greater than the theoretical predictions.

Possible sources of this discrepancy include: cross-flow effects (which were

assumed absent for the theoretical analysis because the windward surface of

the fuselage is flat in this region) and persistence of the boundary-layer per-

turbations induced by the jowls. The assumption of zero flow-divergence was

based on the results from isolated delta-wings with larger sweep angles than

the present case and with zero dihedral (whereas, the present dihedral was 70).

Therefore, some flow divergence would be expected for the present configurations.

Flow divergence increases heating significantly more for a laminar boundary-

layer than for a turbulent boundary-layer (Ref. 21).

As was the case for the UTN2 configuration, the experimental heat-transfer

coefficients near the nose of the UTN7 (Fig, 18) agree with the theoretical

values for a two-dimensional laminar boundary-layer at an alpha of 200 and agree

approximately with the theoretical values for a laminar boundary-layer with

cross-flow for the higher alphas. However, the theoretical heat-.transfer-distri-

bution does not predict the jowl-induced perturbations, i.e., the shock-induced increase

in heating and the subsequent decrease associated with the thickening of the

boundary layer. This is not surprising since the heat-transfer calculations

were based on modified Newtonian pressure rather than experimental pressures

(which would reflect the influence of the jowls). For, a given flow condition,

the onset of transition appears to be further aft on the UTN7. Neverthelcss,

the heat-transfer data indicate that the boundary layer becomes full turbulent
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at all angles-of-attack for the highest Reynolds-number tested. Again, al-

though the low-Reynolds-number measurements for the thermocouples downstream

of x = 0.4L differ significantly from the theoretical values, the boundary

layer appears to remain laminar at all alphas.

The surface pressure distributions for the windward pitch-plane are

presented in Fig. 19. Since the pressure measurements on the windward surface

were independent of the Reynolds number (refer to Figs 12 and 14), data are

presented for only one Reynolds number. As noted previously, the jowl-generated

shock-wave increases the surface-pressure downstream of x = 0.3L for the UTN7,

but not for the UTN2. Recall that locally high values for the heat transfer

were recorded in this region for the UTN7 configuration, but not for the UTN2.

However, because these pressure data were not available at the time, the theoret-

ical heat-transfer calculations were based on the modified-Newtonian pressure-

distribution. For the present tests in the UT SWT, the experimental pressures

from the unperturbed regions of both configurations are greater than the values

calculated using modified Newtonian theory. The correlation is qualitatively

consistent with data obtained in Tunnel B at a higher Mach number, as discussed

in Appendix B. For the Tunnel B tests, the modified-Newtonian relation was

shown to approximate (albeit on the low side) the measured values.

Transition correlations for the pitch-plane. - The values of several transition-

related parameters are presented in Table 3. The onset of boundary-layer tran-

sition was chosen to be the "point" where the heating rate deviated from the

laminar distribution. The current results for the onset of boundary-layer tran-

sition are compared with the North-American Rockwell criterion (as given in

Ref. 22) in Fig. 20 and with the McDonnell-Douglas criterion (as given in Ref. 22)



in Fig. 21. The values of the transition parameters based on the present

data are consistently above the level predicted using either criterion. This

is somewhat surprising, since it iwas thought that the jowl-induced flow-field

perturbations would Dromote transition and, hence, yield relatively low values

for the transition parameters. Thus, the fact that the present transition

values are slightly above the industry correlations indicates that the carefully

designed windward surface (which was designed to eliminate inflection points in

the bow shock-wave and the resultant transition-promoting shear layer) and the

absence of surface joints in the model serve to delay transition.

The present transition results are within the range of data obtained by

other investigators (which were also presented in Ref. 22 and are reproduced

herein). Because boundary-layer transition is a nonlinear process dependent

on numerous parameters, considerable scatter exists in the experimental transi-

tion-locations even for simple configurations. Additional scatter is introduced

into the values of the transition parameters for shuttle configurations because

of the uncertainty for such parameters as local Mach number, local density, etc.

The Circumferential Distributions

In this section, heat-transfer and surface-pressure data will be pre-

sented for those stations which have instrumentation distributed around the

periphery of the cross-section. The location of a particular sensor is defined

by the +-coordinate, where 4 = 0° is the windward pitch-plane and c = 900 is

the y = 0 plane. The location of a particular sensor relative to the geometric

characteristics of the cross-section is illustrated in Figs. 3, 4, 9, and 10.
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Heat-transfer data. - Heat-transfer data are presented in this section for

80 of the 98 available thermocouples for 24 of the 35 test conditions. Thus,

a majority of the heat-transfer data obtained in the present test program are

presented in these figures, should the reader also desire to analyze the data.

Note that the discussion which follows relates only to those stations which

have instrumentation distributed around the periphery.

Alpha of 200. - The heat-transfer measurements obtained for an alpha of

200 are presented for both configurations in Fig. 22. Consider first the

measurements from the windward pitch-plane, i.e., 4 = 0° . The fact that the

heat-transfer at the first station (i.e., x = 0.06L) is greater for the UTN7

indicates considerable cross-flow near the apex. For those stations from

x = 0.12L through x = 0.26L, the heat-transfer measurements are approximately

equal, as one would expect since the data for both configurations were found

to agree with the calculations for a two-dimensional laminar boundary-layer

without cross-flow. The jowl-inducedperturbation causes the pitch-plane heat-

transfer to be higher for the UTN7 at x = 0.36L. Because of the jowl-induced

perturbations and the onset of boundary-layer transition, the heat-transfer data

at subsequent stations is a function of Reynolds number and configuration.

Consider next the other measurements from the windward surface, i.e., for

00 < % < 900. For stations from x = 0.12L through x = 0.26L, the circumferential

heat-transfer distributions are qualitatively similar to those one would expect

for a cylindrical configuration (with the same cross-section) at an alpha of

900. (Such data are presented in Ref. 23.) Thus, the heat-transfer data sug-

gest considerable cross flow in the vicinity of the chines as the flow responds

to the large circumferential pressure gradients. The circumferential flow is

verified by the oil-flow patterns, which indicate that in the vicinity of the
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chines the flow direction is roughly normal to the model axis.

Locally high heat-transfer rates which are measured for 600 < ~ < 900

reflect the jowl-induced flow-field perturbations. The heat-transfer data are

consistent with the oil-flow patterns, inasmuch as the jowl-induced perturbation

extends over a greater area for the UTN7 (for the stations 0.36L < x < 0.5L for

the UTN7 as compared with 0.425 < x < 0.5L for the UTN2). Further downstream,

the heat-transfer measurements for 0.5L < x < 0.7L indicate that these perttlr-

bations continue to influence the heat-transfer to the flat portions of the

windward fuselage, both in and off of the pitch-plane.

It is interesting to note that, of all the leeward heat-transfer measure-

ments, those and only those on the forward-facing surface of the canopy (x = 0.2L)

approached the windward values. For both configurations, these heat-transfer

measurements are Reynolds-number dependent. At an alpha of 200, the heat trans-

fer at the thermocouples just upstream of the canopy (x 0.16L) appeared un-

affected by the presence of the canopy, which begins at x = 0.17L. Thus, the

canopy-generated shock-wave, which is visible in the shadowgraphs at an alpha

of 200 (Fig. 15), apparently does not perturb the upstream viscous flow.

Locally high values for the leeward heat-transfer were observed at other

stations although the locations differed for the two models. For example,

locally high heating occurs just downstream of the aft-end of the canopy

(x = 0.36L) for the UTN2 but not for the UTN7. The heat-transfer distributions

for the leeward pitch-plane are discussed further in the next section.
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Alpha of 30. - The circumferential heat-transfer distributions for the

two configurations at an alpha of 300 are presented in Fig. 23. In the wind-

ward pitch-plane from x = 0.06L through x = 0.26L, the heat-transfer for the

UTN7 is greater than the corresponding value for the UTN2. The difference is

attributed to cross-flow, which is greater for the UTN7. The differences be-

tween the pitch-plane measurements for the region for x = 0.36L through x = 0.50L

are attributed to the jowl-induced perturbations in the flow-field, which cause

the UTN7 heating to be relatively high at first, then relatively low.

Again, the jowl-induced perturbations influence in the heat-transfer

measurements for 400 < ~ < 90° for x > 0.36L for the UTN7 and for x > 0.425L

for the UTN2. The relatively high heating measured on the UTN2 at the highest

Reynolds number indicates boundary-layer transition. Although the flow-visuali-

zation photographs and the heat-transfer data reflect a strong flow-field per-

turbation for the UTN7, the onset of transition at this high Reynolds number

does not appear in the heat-transfer data upstream of x = 0.60L.

As noted for the shadowgraphs of Fig. 16, the canopy no longer generates

a shock wave at an alpha of 300. Whereas at an alpha of 200 the heat transfer

appeared to be unperturbed by the canopy at the upstream thermocouples, increases

in the heat-transfer data can be observed for both configurations at thermocouples

upstream of the canopy at an alpha of 30° . This will be more evident when the

heat-transfer data are presented in the next section as the distribution along

the leeward pitch-plane. Nevertheless, of all the heat-transfer measurements

from the separated region, the heat-transfer measurements on the forward-facing

surface of the canopy (x = 0.20L) are the only ones approaching the windward

values. However, the nondimensionalized heat-transfer measurements for the

UTN7 are significantly less at an alpha of 300 than the values obtained for 20°.
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Alphas of 400 and of 500. - The circumferential heat-transfer distributions

for the two configurations are presented in Fig. 24 for an'alpha of 400 and in

Fig. 25 for an alpha of 500. The general comments which were used to describe

the flow at an alpha of 30° hold for these higher angles-of-attack.

Surface-pressure data. Circumferential pressure-distributions for the UTN2

are presented in Fig. 26 for an alpha of 24° and in Fig. 27 for an alpha of 310° .

The reader is referred to Fig. 9 for the location of these pressure orifices.

At both angles-of-attack, the pressures measured on the windward surface are

independent of the Reynolds number. Furthermore, there is reasonably good cor-

relation between the values calculated using modified Newtonian theory and the

experimental values obtained on the windward surface. As can be seen in Fig.

26a, the pressure measurements obtained on the leeward surface just upstream of

the canopy are independent of Reynolds number at an alpha of 240. Recall that

a canopy-generated shock-wave was evident in the shadowgraphs for an alpha of

250. Based on these two observations, i.e., the Reynolds-number independence of

the pressure data and the existence of a shock wave, one would conclude that, at

this alpha, the flow upstream of the canopy is characteristic of attached flow.

The leeward pressures measured at x = 0.29L at an alpha of 24° exhibit some

Reynolds-number dependence, although no definite relation between the leeward-

surface pressure data and the Reynolds number is apparent. However, at an

alpha of 310, the surface-pressure measurements for the orifices located for

¢ > 90° show a definite Reynolds-number dependence at both stations. It is of

interest to note that the surface oil-flow patterns indicate that the boundary

layer does not actually separate until = 1300. Therefore, even in the region

between the chines and the separation location, the surface pressures exhibit a
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Reynolds-number dependence. The nondimensionalized surface-pressure measure-

ments decrease as the Reynolds number increases. The inverse Reynolds-number

dependence is consistent with the lee-meridian pressure data of Hefner (Ref. 24).

Circumferential pressure-distributions for the UTN7* are presented in

Fig. 28 for an alpha of roughly 230 and in Fig. 29 for an alpha of 300. The

reader is referred to Fig. 10 for the location of these pressure orifices. As

was the case for the UTN2, the pressures measured on the windward surface are

independent of Reynolds number and are in reasonably good agreement with the

modified Newtonian values for both angles-of-attack. The variation in angle-of-

attack which occurred for the two runs of Fig. 28 masks any Reynolds-number

effect which may be present. However, at an alpha of 300, the surface-pressure

data for those orifices located for p > 90° show a definite Reynolds-number

dependence. The oil-flow patterns in this region indicate that the boundary

layer does not actually separate until f c: 130° . The inverse relation between

the surface pressures in this region and the Reynolds number is consistent with

the corresponding UTN2 data and with the leeward measurements of Hefner (Ref. 24).

The Leeward Flow-Field

Heat-transfer data. - The experimental heat-transfer distributions for the

leeward pitch-plane are presented in Figs. 30 - 35 for angles-of-attack of

20° , 250, 300, 350, 400, and 500. The oil-flow patterns for the leeward sur-

face are included in Fig. 33, i.e., alpha of 350° . With the exception of the

thermocouple nearest the apex, only the thermocouple on the forward-facing

surface of the canopy recorded heating rates approaching the values measured

on the windward surface.
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For alphas of 200 and 250 (Figs. 30 and 31, respectively), the canopy

has no apparent effect on the upstream flow-field, as indicated by the heating

rates measured in the region x < 0.16L. The upstream heat-transfer varies in-

versely with distance for the UTN7, while it is essentially constant for the

UTN2 (at least for 0.06L < x < 0.16L). Recall that, in the region ahead of the

canopy, the transverse radius of curvature at the plane-of-symmetry is much

larger for the UTN2 than for the UTN7. Thus, the surface ahead of the UTN2

canopy (where the heat transfer is essentially constant) is relatively flat.

The cross-sections ahead of the UTN7 canopy are elliptic. A canopy-generated

shock-wave is evident in the shadowgraphs for alphas of 200 and of 250 (refer

to Fig. 15). For both configurations, the heat transfer recorded by the ther-

mocouple on the windshield is markedly greater than the value measured at the

thermocouple just forward of the canopy. The heating perturbation, which is

configuration-dependent and varies from a factor of 5 to a factor of 10, increases

with Reynolds number and decreases with angle-of-attack. The heat transfer de-

creases significantly on the downstream surface of the canopy, reaching a minimum

at x = 0.3L. Further downstream on the leeward surface of the fuselage, i.e.,

x > 0.4L, the heat transfer exhibits only a weak dependence on Reynolds number

or on position.

The heat-transfer distributions for the leeward pitch-plane are presented

in Fig. 32 for an angle-of-attack of 300. At this alpha, the canopy-generated

flow-field perturbation causes the heat transfer to increase at thermocouples up-

stream of the canopy. It is interesting to note that this angle-of-attack is the

lowest alpha at which the upstream perturbation was recorded and is also the

lowest alpha for which no canopy-generated shock-wave was evident in the shadow-

graphs (Fig. 16). The characteristics of the upstream perturbations differ for
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the two configurations. For the UTN7, the heating perturbation is evident

at only one thermocouple and increases with Reynolds number (as did the per-

turbation on the windshield). The canopy-induced perturbation for the UTN2

extends further upstream but causes only a slight heating increase, which is

essentially independent of Reynolds number. The peak heat-transfer, which

occurred on the windshield, was significantly greater for the UTN2 than for

the UTN7 (which decreased rapidly for these alphas). Again, the minimum

heat-transfer occurred at x = 0.3L. Further downstream, on the leeward surface

of the fuselage, i.e., x > 0.4L, the heat transfer exhibits only a weak depen-

dence on Reynolds number or on position.

The heat-transfer distributions for the leeward pitch-plane are presented

in Fig. 33 for an angle-of-attack of 350° . Since the heat-transfer distributions

are qualitatively similar for 300 < a < 400, the objective of this figure is to

relate the heat-transfer to the flow-field characteristics. Thus, the leeside

oil-flow patterns are included. (Gravity, which acts downward relative to these

photographs, may cause slight asymmetry in the oil-flow patterns.) The heat-

transfer distributions are presented so that the measurement from a particular

thermocouple can be readily compared with the oil-flow pattern for that location.

Thus, the axial coordinate is distorted slightly in the nose region to compensate

for the surface curvature.

The oil-flow pattern upstream of the canopy indicates the vanishing of the

circumferential component of shear, while the longitudinal component of flow

causes the oil to move over the nose along the plane-of-symmetry. Furthermore,

the oil moves longitudinally along the circumferential separation curve (as is

evident "below" the canopy of the UTN2). These oil-flow patterns are character-

istic of the free-vortex-layer type of separation.
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Whereas the oil has been scrubbed off the surface of the canopy wind-

shield, the shear on the downstream side of the canopy is not sufficient to

erase the brush strokes of application. Thus the oil-flow patterns on the

canopy are consistent with the heat-transfer measurements in this region.

Of the leeward heat-transfer measurements the maximum occurs on the windshield

and the minimum occurs on the downstream surface of the canopy.

Downstream of the canopy, a viscous mechanism has brushed the oil in the

vicinity of the plane-of-symmetry. Although the oil-flow pattern does not ex-

hibit the "featherlike" characteristics described by the researchers at the

Langley Research Center, the vortex is assumed to be the governing viscous

mechanism for the present configurations also. Downstream of the canopy, the

heat-transfer is only a weak function of position.

The heat-transfer distributions for the leeward pitch-plane are presented

in Fig. 34 for an alpha of 400. The distributions at this angle-of-attack are

qualitatively similar to those obtained at 300 and at 350° .

The heat-transfer distributions for the leeward pitch-plane are presented

in Fig. 35 for an alpha of 500. The canopy-induced flow-field perturbation ex-

tends well upstream, almost to the apex of the orbiter. As is the case for all

angles tested, after reaching a maximum value on the windshield at x = 0.2L, the

heat-transfer decreases to a minimum value on the downstream side of the canopy

at x = 0.3L. Further downstream, on the leeward surface of the fuselage, i.e.,

x > 0.4L, the heat-transfer distributions exhibit variations with Reynolds

number and with position which are greater than any recorded at the lower angles-

of-attack. Although the nondimensionalized leeward heat-transfer h/ht R=1 ft.

remains relatively low (no value above 0.01 was obtained in the present tests),

the data suggest that changes occur in the leeward flow-field. Oil-flow patterns



32

which have been obtained in exploratory tests in the UT SWT indicate that the

separation pattern for alphas in excess of 420 is different than that obtained

for lower alphas. Since the UT SWT data are considered preliminary, additional

data are needed before one can make definite conclusions about the separated

flow-field. However, a possible explanation of the change is that the boundary-

layer separation mechanism at the higher alphas includes a bubble-type separation

(perhaps as part of a two stage separation, with the free-vortex-layer type

upstream). This would be consistent with the calculations of Wang (see the

Introduction, page 2).

The heat-transfer distributions from the leeward pitch-plane of the two

present configurations are compared in Fig. 36. Except for the forward-facing

surface of the canopy, the heat-transfer distributions are roughly the same for

both configurations at all angles-of-attack. There are differences in the

heat-transfer for thermocouples on the fuselage, i.e., x > 0.4L. However, the

differences are relatively small and the heat-transfer in this region is rela-

tively low for both configurations.

Also presented in Fig. 36 are the data obtained in the Langley 20-inch

Mach 6 tunnel (Ref. 24) for a delta-wing orbiter (which had no canopy) and the

data obtained in Tunnel B (Ref. 25) for the NAR 161B, a delta-wing orbiter with

a canopy. The data were chosen so that the free-stream conditions were roughly

the same for all four configurations, i.e., comparable values of Mach number

and of free-stream Reynolds number based on model length. The maximum heat-tran:;fer

measured on the Langley configuration (using the phase-change-paint technique) i

consistently higher than the peak value obtained in the present tests at the

same alpha (noting that it is possible to miss the peak value since only a

finite number of thermocouples are available). Of even more significance is the
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fact that the heat transfer downstream of the canopy location is consistently

lower at all alphas for the present models. Furthermore, for the present con-

figurations the downstream heat-transfer is only weakly dependent on position

(and on the Reynolds number), whereas a second heat-transfer peak is evident

in this region of the Langley model and increases in severity as alpha increases.

The heat-transfer rates measured downstream of the canopy of the NAR 161B compare

favorably with the present data. Thus, it appears that the presence of a

protuding cockpit changes the longitudinal component of flow, resulting in

relatively low downstream heat-transfer.

The relation between alpha and the maximum lee-meridian heating rate

measured in the present tests differed markedly from the correlation obtained

for the Langley configuration, as can be seen in Fig. 37. Whereas the maximum

heating rate measured in the leeward pitch-plane of the Langley orbiter increased

as alpha increased, the peak value decreased as alpha increased for both of the

present configurations. For the UTN7 the peak value decreased more rapidly with

alpha for alpha from alphas from 200 to 300, than at the higher alphas. For the

UTN2, however, the peak value decreased most markedly as alpha was increased

from 400 to 500. The maximum lee-meridian heating rate was consistently greater

for the UTN2. In addition, the position of the leeward peak heating was a

function of the angle-of-attack for the Langley configuration. For the present

tests, the maximum heat-transfer rate always occurred at the thermocouple on

the canopy windshield. Therefore, alpha had no effect on the location of the

peak heating.

Since the heat-transfer data presented in Fig. 37 are the maximum values

measured along the leeward pitch-plane, these values ?reflect the canopy-induced
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perturbation. Therefore, heat-transfer measurements for other lee-meridian

thermocouples are presented as a function of alpha in Fig. 38. These thermo-

couples are located downstream of the canopy on the fulselage. Although tie

local heat-transfer varies with Reynolds number and with angle-of-attack,

there appears to be no systematic correlation with these parameters. Further-

more, because the heating rates in this region are low, the experimental un-

certainty approaches the Reynolds-number related variation observed for some

conditions.

Surface-pressure data. - The pressure distributions for the leeward pitch

plane of the UTN2 at an alpha of 310 are presented for several Reynolds

numbers in Fig. 39. For a given Reynolds number, the surface-pressure distri-

bution is qualitatively similar to the heat-transfer distribution (refer to

Fig. 32). The pressure is constant on the relatively flat surface upstream

of the canopy. As was the case with the heat transfer, the maximum pressure is

measured on the canopy windshield, although the canopy-induced perturbation is

evident at an upstream orifice. Downstream of the canopy, the pressure is rela-

tively constant. Thus, there was no minimum as was observed in the heat transfer

at x = 0.3L. The pressure measurements at the last two orifices are believed to

be perturbed by the presence of the sting support. Unlike the Tunnel B heat-

transfer data, these UT SWT pressure-data depend on the Reynolds number. Except

for those orifices, where the pressure is affected by the canopy-induced flow-

field perturbation, the pressure decreases as the Reynolds number increases.

As noted previously, this inverse Reynolds-number correlation is consistent with

the pressure data of Ref. 24.

The lee-meridian surface-pressure distributions for the UTN2 are presented

for several angles-of-attack in Fig. 40. The maximum pressure (which occurs on

the canopy windshield) varies inversely with the angle-of-attack.
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The maximum lee-meridian heating rate and the maximum lee-meridian

surface-pressure are presented in Fig. [41 for the UTN2. Although there are

only limited data available at present, the two parameters exhibit a similar

dependence on alpha. Thus, at least for this particular location (on the

canopy windshield), there appears to be a relation, such as

hPK PK
hre ( n
ref ref

which describes the heating perturbation in terms of the pressure perturbation.

General comments. - A review of the aerothermodynamic measurements for the

leeward surface of delta-wing orbiters would be beneficial at this point. The

table below contains a brief summary of the test programs which have formed

the principal data-base of the discussion.

Tunnel B
Heat-Transfer Program

UT SWT
Pressure Program

Langley, Mach 6
20-inch Tunnel

Test conditions:

M 8 5 6

Re L 6 6 6 6 6Re. 1.6 x 10 to 7.8 x 10 6 x 10 to 12 x 10 1 x 10 to
7.7 x 106

Model:

Length 2.1 ft 0.5 ft 1.0 ft

Notes Cross-sections varied, but both have curvature windward face
on the windward surface is relatively

flat.
Both configurations have canopies No canopy

Technique Thin-skin thermocouple Phase-change

paint
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The lee-meridian heat-transfer-rates obtained in the Langley program

were Reynolds number dependent. However, the Tunnel B heat-transfer data

were virtually independent of Reynolds number. For both programs, it was

concluded that the leeward heat-transfer was due to the impingement of the

vortices formed during separation. The presence of the canopy apparently

reduced the longitudinal component of flow, reducing the downstream heat-

transfer. As noted in the Introduction, Hefner and Whitehead (Ref. 13)

reported that a configuration "with relatively large initial slope angle

and sharp break in contour generated relatively low lee-surface heating."

It was concluded that this lee-surface geometry encouraged the vortices

to break away from the lee surface, significantly reducing the heating.

Thus, the canopy and the abrupt change in contour have a similar effect

on the leeward heat-transfer. No explanation can be given (based on

available data) as to why the heat-transfer data for the configurations

(plural) with a canopy are independent of Reynolds number, whereas the

heat-transfer data for the configuration (singular) without a canopy are

Reynolds-number dependent. It might be noted that the configuration for

which the leeward heating was Reynolds-number dependent had neither a

canopy nor an abrupt change in contour.

On the other hand, the surface pressures varied inversely with

Reynolds number for both the UT SWT program and for the Langley program

(Ref. 24). Lee-meridian surface-pressure data were reported by Hefner

and Whitehead (Ref. 13) to be insensitive to the effects of vortices.

The leeward surface pressures are believed to depend on the wake width.

Therefore, a program is planned for the UT SWT to measure the width of the

near wake as a function of Reynolds number.
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CONCLUDING REMARKS

Based on the analysis of the data obtained in the present study,

the following conclusions are made:

1. The comparison between the experimental and the theoretical

heat-transfer distributions indicate that flow in the windward

pitch-plane is two-dimensional at an alpha of 200 but exhibits

cross flow at higher angles-of-attack. Perturbations (which

were configuration dependent) in the heat-transfer and the

surface-pressure distributions occurred in the vicinity of the

windward-surface fairing which was required to mate the rounded

nose to the flat underbelly of the windward fuselage.

2. The boundary-layer transition parameters based on the present

data were consistently above the level predicted by industry-

used shuttle criteria. This is somewhat surprising, since it

was thought that the fairing-induced flow-field perturbation

would promote transition and, hence, yield relatively low values

for the transition parameters. Thus, the fact that the present

transition values are slightly above the industry correlations

indicates that the carefully designed windward surface (to

eliminate bow-shock inflections) and the absence of surface

joints in the model serve to delay transition.

3. Over the range of alpha tested (200° a < 500), separation was

of the free-vortex-layer type. Thus, even in the separated

region, there is a strong component of the longitudinal flow.
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Although the cross-sections of tile two models differ markedly,

the separation surfaces for an alpha of 350 (as determined f:roln

the oil flow patterns) were roughly the same. The oil-flow

patterns show evidence of vortex scrubbing in the leeward pitch-

plane of the current configurations.

4. Of the thermocouples on the leeward surface, those (and only

those) on the forward-facing surface of the canopy recorded

heating rates approaching the values measured on the windward

surface. The windshield heat-transfer was highest at an alpha

of 20° , but remained high (with the canopy-influence extending

upstream) for alphas from 30° to 50° . A canopy-generated shock-

wave was evident in the shadowgraph for an alpha of 250, but

no shock-wave appeared in the shadowgraphs for higher angles-

of-attack. On the canopy, the perturbed values of the non-

dimensionalized heat-transfer, h/ht, R = 1 ft.'increased with

Reynolds number.

5. Over the angle-of-attack range 200 < a < 500, the heat-transfer

data for the leeward pitch-plane are significantly less for the

current configurations than for a Langley delta-wing orbiter

(which had no canopy protuberance). Thus, the cockpit appar-

ently changes the longitudinal flow-component. Downstream of

the canopy location, the present data were only weakly depen-

dent on the Reynolds number, whereas the Langley data in this

region were very sensitive to Reynolds number.
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Table 1. - Run schedule for the entry configuration

tests in Tunnel B of AEDC

(a) Heat-transfer runs

(i) UTN2

Re ,L Pt2 Tt
Group (deg) M (x 10 ) (psia) (OR)

35 20 7.92 1.565 1.329 1245

36 30 7.92 1.552 1.319 1244

37 40 7.92 1.577 1.335 1242

38 50 7.92 1.561 1.320 1240

34 30 7.96 3.007 2.590 1265

28 20 7.97 4.113 3.615 1282

29 25 7.97 3.967 3.615 1314

30 30 7.97 4.059 3.610 1293

31 35 7.97 4.132 3.620 1279

32 40 7.97 4.182 3.650 1277

33 50 7.97 4.117 3.640 1288

27 30 7.98 5.685 5.150 1311

26 30 8.00 6.799 6.150 1314

20 20 8.01 7.801 7.270 1343

24 20 8.00 6.895 7.310 1460

21 30 8.01 7.778 7.280 1346

22 40 8.01 7.793 7.310 1347

23 50 8.01 7.770 7.290 1348

25 50 8.00 7.747 7.310 1350

42



7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9

7.9.

8.0

8.0

8.0.

8.0.

8.0.

8.0.

(ii) UTN7

Re

(x 10 6 )

3 1.656

3 1.637

3 1.613

3 1.634

3 1.623

6 2.963

8 4.044

8 4.053

8 4.065

8 4.078

8 4.078

8 4.053

9 5.666

0 6.568

1 7.784

1 7.857

1 7.789

1 7.770

1 7.799

(b) Oil-flow runs

Re

(x 10 6 )

1.6

1.6

1.6

43

a
(deg) M

O

Pt2
(psia)

Tt

(OR)

20

30

35

40

50

30

20

25

30

35

40

50

30

30

20

30

30

40

50

Group

15

16

19

17

18

14

8

9

10

11

12

13

7

6

1

3

4

5

2

Conf.

UTN 2

UTN7

UTN7

1.330

1.323

1.330

1.331

1.330

2.615

3.600

3.605

3.605

3.615

3.610

3.608

5.140

6.140

7. 310

7.315

7.260

7.280

7.305

Pt2
(psia)

1.33

1.33

1.33

1201

1206

1222

1212

1217

1284

1295

1295

1292

1293

1292

1295

1313

1343

1349

1341

1343

1348

1347

T t

(OR)

1220

1220

1220

a
(deg)

35

35

20

M

7.92

7.93

7.93



Table 2. - Run schedule for the pressure models of the

nose configurations tested in the UT SWT

(a) UTN2

Run No.

2-11-29

2-12-5

1-12-4

1-11-30

1-12-6

3-12-6

2-12-1

1-12-1

1-11-29

1-12-12

2-12-6

2-11-30

1-17-5

a
(deg)

32

45

22.5

31

45

25

43

19.5

31

24

46

31.5

24

M

4.97

4.97

4.97

4.97

4.97

4.97

4.97

4.97

4.97

4.97

4.97

4.97

4.974.97

Re
AL

(x 10 6 )

6.58

6.63

6.73

6.83

6.83

6.91

8.11

8.13

8.13

8.21

10.80

11.00

11.13

P t2
(psia)

13.99

13.79

13.99

16.14

16.08

16.08

19.11

18.92

18.92

19.11

25.18

25.24

25.41

+ Air in reservoir was at ambient temperature

44

T
t

(OR)

+No HT

+No HT

+No HT

582

582

578

582

578

578

580

572

572

572



Table 2. - Run schedule for the pressure models of the

nose configurations tested in the UT SWT

(b) UTN7*

Run No.

1-10-17

2-10-18

1-10-18

1-10-6

1-10-12

2-10-17

(deg)

30

22

23

30

30

20

M
OO

4.97

4.97

4.97

4.97

4.97

4.97

Re

(x 10 )

6.65

6.79

8.41

8.43

11.42

11.43

Pt2
(psia)

14.93

15.19

18.85

18.85

25.17

25.23

T
t

(OR)

No HT

No HT

578

578

572

572

*The leeward surface of the UT pressure model differed slightly from the AEDC
heat-transfer model as noted in the section "Experimental Program".
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Surface of separation 

Streamline 

Line of separation 

face of solid body 

(a) Separation bubble; basic pattern 
presented by Wang (Ref. 3) 

Surface of separation 

Surface of solid body 

•Line of separation 

(i) Basic pattern presented by Wang (Ref. 3) 

Leeward, helical vortices 

Line of separation 

(ii) Model of Stetson (Ref. 6) for a cone 

(b) Free-vortex layer 

Figure 1. - Sketches of separation patterns. 
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"igure 5. Photograohs of the two 0.019-scale models 
tested in Tunnel B. 
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(b) UTN7 

Figure 5.- Concluded, 
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Figure 6. - Comparison
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Figure 7. - Heat-transfer distribution for the windward
pitch-plane of the UTN2, as affected by the surface
change.
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(b) Oil-flow pattern 

figure 11.- Flow-visualization photograDhs for the windward surface of the 
UTN7 at an alpha of 35°, M = 7.93", Re L= 1.6 x 106. 
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ii 
Figure 13.- Oil-flow pattern for the windward surface of the UTN2 

at an alpha of 35 7.92, Re ,L = 1.6 x 10
c 
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(a) UTN2 

(b) UTN7 

Figure 15.- Pitch-plane shadowgraph for an alpha of 20 
M ,0, Re . = 7.8 x 10c 

°°,L 
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(a) UTN2 

(b) UTN7 

Figure 16.- Pitch-plane shadowgraphs for an alpha of 30 
M =8.0, Re = 7.8 x lO1 
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Figure 17.-Heat-transfer distribution
for e w7indadt27

for the windward pitch-plane of the UTN2.
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QUTN2 • UTN7 

Re x,tr 

Open symbol, Re^ . 4.1 x 10 

Filled symbol, Re = 7.8 x 10 

Data band, as presented in Ref. 22 

NAR criterion, as presented in Ref. 22 

T - T — i i i i — r i i •i:=*jjiiiil!:ijjijjllinjjjjjtjjiijî ;ij=:j:j!j;;jij;l 

1 x 10 -
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5 x 10 

Figure 20. - The local Reynolds number at transition 
as a function of the local Mach number. 
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Open symbol, Re^ . 4.1 x 10 

Filled symbol, Re T = 7.8 x 10 7 °°,L 

:a banc, as -resented in Ref. 22 

MDAC criterion, as presented in Ref. 22 
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Figure 21. - Current transition results presented in terms of the 
McDonnell-Douglas correlation parameter. 



!

O

¢D3J

[D
O

a)O
D

o

o

04-i04to

H+d41

o 
.

CD
 

I 
q
O

X
 

aC
d

d 
4CJ

4-,C
d

C
d

4.r4( 2

C
0 

O

H
 

hN

,_ 
oCD

o
o0 xa)IIt8
a)
040XxII

8
a)

P;

0L
OoX(o

8
a)

0

-Io

o-H0D

O
L

0

4-;

4q

o0 C
)

$g
I

i
II

I
L

L
-+

p
g

r8--
!

!
V

!
I

I
1

1
1



o¢3

-

E
D

O

O0t,-

cI:Z:

O
 

*H
(0 1

o

a,
0)

HC 
:C

,-t 
C

o

o 
It

co

_ 4

C
t--,_

 
E

(0 
r-1

O
 

.

o

3c:o

' dalc~
0O

I

C
D0xrl II8

O(D
oX,--tII8
a)
P;

0(DII8
a)

C
)bD

.,- f1

oH
1

oCDO
)

44
'4-i

HI I

4C

o

-
.

-
If

1I. 
>

E
-O

L

V
I

!

-L
-,

I
L



O

8:)
COO

0 
(L

OOQt%

C
1)

o

Lk 
o

I '
s

I

0C
N-

(N

o 
E

-

.H

o 
-

L
O

x00L
-II

,rl

8

O0o

L
OoX-lIII

8,-

oxII8
O

)

0

o

0o

a
i-

a

HD 
0

0
0

II0) 
abO

oC
N

[
-

0

(0D 
*H

(D
 

.,

o

o--IH
~

oo O
D

O
)

I 
I 

It\
I

I
II

I

I
I

!

I
-tl"-
y
jr-

1



(0r~
~

~
~

~
~

 
O

0
~

~
O

D

0

w
 

occ
-

Z

~ 
0 

.H
CO__O 

v 
r

x 
t

H
 

0J

(Y. 
I 

I 
I 

I 
0
- 

a 
C

 
|l 

s 
010

o 
_o

(8 
"o

:0

o_-_

0oII

v

·~
~

~
~

~
~

0
*



C
N

zv .H

."

D0 
C

4

0
0 

C
)

C) 
u

X
C

_ 
a)bO

.,44

I 
I 

I 
I 

I 
I 

I _0

O
o
_

I I 
A

I 
~

[I
[

H
 

4 
o

o 
o
~

~
~

rlII

424
=c

XxcoII8

(D,-oX-4II8

Oo(DXI I8

o-0
-

0H0H

0

7:F-

..
q_
~

·
oo

I 
I 

ooC
o

82



-
--- 

I

C
O

-

(:O

I 
I 

I
0

.I 
I 

.

IH 
o0

11
fal42~

WPe
=

G

I 
I1

 
I

o0 C
)

C
O

0IH-

o
C

N

-- 
E

,D

0 
'
 d

I 
a a)

* 
C

)

o

a0
 

II
H

rl~
.

CX 
Y

bfl

0H 0,1

0-9

z

oO
 

H

83

I
. 

'i I 
I 

I 
I 

I 
I 

I

ooc

0o

I oODI 
-

O
:D

I 
I 

I 
I 

I 
I

(D
0Oo XII8
a)

OoII

8
(D 0xII8

a)

ICo 00

4 .O



I 
I 

I 
I 

I 
I 

I

cg

I 
I 

I 
I 

I 
"1I

I

I 
I 

I 
I 

I 
I

cO
C

D0

O
4

C
N

-o- 
ZH

0 
*,1I

Io 
H

 
I

O
 

II

o0 
.,

C
O

 
C

O
H

 
X

 
N

"
-' 

0)

.H

0 
1-1 

4-

OC'JH
l

I 
I 

I 
I 

I 
I

4c

4J

.hp:r

0o

o0 C
)

-
-O

E

(o 
.

0

84

(0
ox0II 8

a[.(
0

8
a0xllII8

0

o C
O

0-llH
~

0 
c



o I I

I 
I 

I 
I

ocO

I 
I 

I 
l* 

I 
I 

I 
r0:-

I 
I 

I 
I 

I

H tl
4-414I

4

L
f0

EI:~K
]

0oo O
)

O
)

85

oC
N

CNJ

,-Z

O
 

.,
(0 

'-

oHx

coII8
c)

o L
I

00Z
l

,-tII8

0-(,t(0 -1HII8
a)

0.o

H00IIx1,

b
O

(NC
N0u

,-4

N-O0
o
-

E
-

o 
H

(0 
'

oo

I

Ird
e



I 
I 

I 
I 

I 
I

C
I,(N

-.

00C

0

I 
I 

I 
I

I 
I

I 
I 

I 
I 

I 
I

-I 
4 

0

at

000

=
 

Ii 
o

H

II

44J

p:cr
r:

o

86

o-e
C

z

Z.,-
.,-I

.
0

_
(0

o 
4a
.,-,

0o 
0

0 
0

o 
C

j
oCO

 
II 

I

H
 ,-

(NbO

oC(No-a) 
rzE

-

o 
H

(D
 

o 
*

0

0

L
ox

lco

II8

0to
oxI[

8
a)

0

(D
0,-X(lII8

Q
)

o cI

co
-071-10



I 
I 

I 
I 

I 
I 

I 
I

0

oo0

0
0

I 
I 

I 
I 

I
I 

I

I 
I 

I 
I 

I 
I 

I 
I 

I

0
0O

I 
I 

I
oC

D

I 
I 

IC
 

I 

~k 
O

 
0

H
O

 
O

87
II044

4::

(D

x0CII8

00-,oXII

8
0)

0(00XC
OII8

0)

o

CqE

tO 
'

Oo1,-

oC
0IIx

0)
'-00c.lQ

)

bl

I---

o-&
 

Z

o 
.'~

(D0

o o001

a 
._

oC
)

I



I 
I 

I 
I 

I 
I

0

-i

I 
I 

L
--a 

I-
I 

I 
I

I 
.

I 
i 

I 
I 

I 
I0_

sD
 

_

0

i

0

coo

c
o
)

, 
, 

o

v 
d

o
r
 

H

.E-~

0
( 

(E

0r ,

4-J

(D
 

VC0-i

-41

O
 

o 
CO
r-

-tl

~~~~H
 

)O
~

r

Ha,

v

E
l-

E
-

.H

C
)

(Na)b1
r"

C(0LJ

o

r4-44-i
HII14-PC

,
C

oo

I 
I 

I 
I

L
O

0
00 C

)

o

88

(.0o0II

8
0),I

xII

oo,-rl 8
0)

0(o

(0

8

0

o04

7- 
Ij

I 
,~



I 
I 

1

rl
0

I 
I 

I 
I i0

L
no

42
(4-i

r-l
II
IP42

0-4

H

0

00
I 

C
q

0 
-o

I 
I

OIn
0o

00

e-

0(0ol
ICo,0

o

o

0 C
D

o

89

--
I 

I

C
'

(.0oxcoII8

0(0
0ox.XII8
a)

O(o0(0II8
0)

0

a)

H
 

* O0
C

0 
U

II 
Ibo

.-
I

I 
I 

I 
I 

I 
_ 

I 
0lU

0

0

_ 
f~

~
~

O
-

O
-

0
00I

'I 
I 

I 
I 

I 
I

0 
i

oC
N

I



o

(N
-e- 

z: 
-

D
 rq

C
)

.1-
(D

 
*HC

.
o 

O

0 
II

H
 

X

C.,I
C

' 
C

N

o

E
-

.H
O(00

090

90

I 
I 

I 
I 

I 
I 

1 
C

OO
 , a- '

0
0

(0
(Da); II8

0oxc-118

[
]

0
-o(D1lIt8
a)

O

0C
N

C
;

I 
I 

I 
I 

I,., I 
, 

¢O
0~

0
III

_
~

~
~

~
 

0

a

I I 
I 

I 
I 

I
(0H

i
4-) 

0
t4H 

H

H
 

o
I 

II4,

tC

L
O

0C
)

I41



I 
I 

'I 
I 

I 
IO

T
0 

_

I 
I 

I 
I 

I

I 
I 

I 
I 

I 
I

_
| 

.
| 

|| 
|| 

I 
I 

I 
I

o-1
0C

)

000

91 1
0a,

NH
10-9

-

0I H

(NE
H,_ _S

0)

o

C
Nb0

.,r"

0C
H

o

I--
&

 
Z.li N

0(D0

(.
o0xcoII8
a):4

0(D
o-iHII8
a)

00oH(Di8
q)

I 
I

00

L
O-l

43Ic,

I

I

I



0C'xl

cO

0

0 
N

(0 
o 

8

0n
0

r 
Z

8 
0

0

0

) 
U

) 
4| 

C
. 

L
O

| 
I 

C
 

-
O

 
J

:1- 
_ 

4 
C

X

_ 
>

0
8^ 

r co

O
 

C
) 

-
D

 

I 
I0

i 
1
1
o

092

o

L
 

H

O
 

-- 
,-' 
0 

in
 

0

92

.d
l�



I 
I 

I 
I 

I 
I 

I 
~

ryCC
l

0

I 
I 

I 
I

I0

oo0

oge-lJo 
O

o-e

(D

x0II

8

O0(D
ox-lII8
q)

O

(0
0x(oII8
0)

0

or4

:v_

oo )

o 
u

I Ix
()bO
.-

I
PI

r-zE
-

.m-i

1



I 
I 

I 
I 

I 
I 

I
00
11-Po0 

o0u

0
¢D

I 
I 

I 
I 

' 
I 

U
)

II4-

_4

00--
oo

0

I 
I 

I 
I 

I 
I 

I

ooo

0o 
E.,rl

0

(D

· 
.

C
)

CO
 

X
 

C
O

t 
C

a
~t 

-

01) 
O

I I
bf
·'H

0

I H

0-e)-
rzH

-v D
,

_}1
01(D0

94

L
ooXxcoII8

a)

o 0HII

8

a)
P;

ox(0II

8
a)

oo 014

c0.



I 
I 

I 
I 

I 
I 

I
c o

-*
I-

o(M
 

-

O
 

J

I 
I 

I 
I 

c

I 
I 

I 
I 

I 
I

O
o

C
d
 

-

(1

C-I 
(0

o0

I 
I 

I 
I 

I 
0 

, 
o 

U() 
4 

o 
) 

C
)

C
o 

o 
o 

o 
oC

 
C

 
II

P4
.0

C
a

.95

v.,

-

0(Do0 o~4-

(D
o-o00{-II8
a)

coX

8
a)il8

0

oL
o

IIxX
r

0c-) ocNhQ
)

bO

0

rl-v .H

o

T



I 
I 

I 
I 

I 
I 

I 
I 

I 

(3c

0

0
00

I 
I 

1 
I 

I 
I 

1 
1Q

I 
I 

I 
I 

I 
I 

I 
I 

I

0

oOC
0

i H

CO
 H

0alo

o 
0

LO 
o 

o
 

.
o C
o
 

o

4
 

~
 

~d 
~_ 

r4 
o
o

1-
l 

ll II4-J
96

ocoCD

H
:

(.Dol-xII

(D0II8
a)

0oxII

8
0)
P0

O

C
N

zv H

o 
c(0C

N

.,-I

0-v
-

z

0(.0o I I

I



I 
I 

I

O

II 
I 

I 
I 

I

0 
O

I 
I
o
 

I 
I 

I 
.

I,

K
 

I 
I 

I 
I 

I 
I 

.
I 

I 
I

o
) 

0

O0 
0

n 
o 

ur 
* 

O
 

o
N

\ 
NV 

p
i 

p 
1 

0
O

 
O

 
O

 
O

 
O

-~~~~~~c

,c
 

H'I4-)

97

oI-

j0IrN

(Nz.r
-I

.,-

oo(D

oO

(D

I

8

Q
)

0

HI I8

0(D
oX(D8l8
0)

P4

O

O

r-oItX

COO
a00
IH-

a)

0C
.)

N I

.,-

C
0

z.rl

v

o

C
.

(0

croo C
O

O

-
I 

I 
I 

a 
I 

I 
I 

I 
I 

I

I

r

m
A

I



I 
I 

I 
I 

I 
I 

I 
I 

I"_
l-

t] 
-

C
D

I 
I 

I

I 
I 

I

^
I 

I 
I 

I 
I

I 
I 

I 
I 

I 
I

00_

0

I 
I 

I 
I 

I 
I

4-4

S 
HII

'4

0o

L
)

0

o0C
;

0C
No 

-' 
H

Z( 
004

t0 ~
--U

0

4-'H044C

'D
 0

O
 

0)

oH
~

 
U)o1

X
 

hI

4J ,.

0

0o 
t~E

H
 

rd

C-)dC

a)

o 
¢4

(D
 

09

0
O

0

ov

98

(D
0XII

8
a)

0(.H
-

IIli8
a)

,O0oxli

8
0)

Lu)
(N

C
3

0

la

I 
I

n



(D

XC
O 0II8
cq)

0(O
0..11II8

0I
I8

p:

r 
r

.
0

.l
C

-

0C
Oo 

o

C
D

C
N

o -O

0 
0oo

H
 

11
C

O

H or

99

I 
I 

I 
I 

I 
I 

I 

~~~- 
o-~C

o0
I-

0

o
I0D

IX
 s~ 

I
.J 0(N ,I

C
)bf

0

0

I 
I 

A
 

I 
I 

I 
I 

_ 
_
~

~
~

N

0

O(D

0
L

nH
C

D
0

00C
o



I 
I 

I 
I 

I 
I

0-

O
-

C
N

I

o-O-

04NE
-v

O(D

I 
I 

I 
I 

I 
II

0

I 
I 

I

o
*

 
L

4
 

.
:)

o 
o 

,o
sC 

HIIsY,

rl

I 
I 

I 
I 

I I
00

0

I 
I 

I

L
O

00)

00

4 J

uP 
0

o 
aI

II
o 

rt.H
oO

 
X

 
C

~

.o 
F

h

0*

'A
N

·

o 0-0-

(.0

r-zE
-

-,-

100

0 xcoII8
a)

Oo0oXII

ll8
q)

o(0
0,-H

II8
a)

O

¢l



I 
I 

I 
Im

I 
I

I 
I 

I 
I 

I 
I0_

0

0 
LO) 

42. 
0

c4 
r 

-I 
I 

, 
-l

CDo 
o 

H
 II4I

91

I 
I 

I

00

I 
I 

I 
I 

I 
I

o 
oa

00CD
H

l00-o 
z

co

.,

cD0coII8
a)

0L
D0XII8

a)

00X.OII8
0)

64

0 
,-1

o 
41C

D.
o

o 
II

H
 

v

-p420C-)a)Fl

r"l

0(N
I Ho

rC

0 
v

(O

00o

1
0

1



a)

H
 

*H0
0 

C
I

It 
I

Xa)

102

C
o

H
I 

I 
I 

I 
I 

I 
I

0-
0 

O

I 
I 

I 
I 

l 
I 

I

0'-B

C
N

zE
-

:,-.H
4

(D
C

0xoII8
a)

0lO
oII8

([0c.DrlII8

0 P;

00CcoH
1

ztC
'4

.I a,
PO

o(NH
l

I 
I 

I 
I 

I 
I 

I 
I00

I III 
I 

I 
I

0-

Zz

O0

oO0

O
)

,-

0
L

H
11II

--l' p:
+

Z

c

0)O

o000



· 
o 

.
o

IO
 I 

I 
.

II
.0

O
 

O
 

H
 

O
~~~~~~~~~-

I 
I 

I

Inoo

103

¢4

D
o

Ic
IH-oC

H

0
C

N

Z.,-I
v

oCC)

co

(0.II x

8

0

(D

XII

,I

8

0)

(D0xi

8
0)

O

I 
I 

I 
I 

I 
I 

I

H1 
*.H

0
9
 

C0
c0 

UC
.

II 
I.,

'v
 

(N
'.- 

0

Io0(NH
 -

0

E
-v

O CD 
(0co

o



I 
I 

I 
I 

I 
I 

I 
I 

I 
I

O
a

I 
I 

I 
I 

I 
:

0 
L

O

H
l ~ 

O

O
 

O

1
0
4

0H
4

0C
'1

o0 
0z

O
O

(0
oN

li
II8
,-

0DoxH
-It8

(0Oo,-X(DII8
G

)

0

(0

I 
I

o r-I)
C

 
JN

 
O

* 
C

)I
IIx 

_;

bO
 

°bl)
.,A[L

4

at

1 
I 

I I 
I 

I 
I 

I 
I II

 
I 

I

(ID

_ )0
 I 

I 
I 

I 

0 
I~ 

I0 
In

 
0 

CDl
0(N

I H

o

ZE
-

v
0(0

o0

oNo

oC
N

0

L
o

0-
4iI Ily4,;

O

oC
; Ii

I

(01

I 
I 

[:

A



I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I

O
_o

(D

0

l. 
' 

b 
1.

I 
I

{
3
o

-, 
1-

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I

(

0

0 
--

0

0O

I 
I 

I 
I 

I 
I 

1 
I 

I
L

) 
0) 

Ln 
o 

U
0
C

4
N

 
CN 

+
 

H
 

H
 

o 
C

0,1 
C

~
 

.
' 

,---I 
,--I 

0 
)H

o
o

i-
o

0
0

1
0
5

tl-

E
-v:

o

o

0'4-v)

(o , 00-I0 
-oC
N

H
-

0

o-0)
(NE

-
n1-:,i14

0cotl

8

0o

o (00H
l11II8

0(0II8

0)
P0

0

cC

a)

o 
C

U
) 

ou

itxX

Z
;

(Na)bFl
.H

4

)
�l



I 
I 

I 
I 

II 
I 

I 
I 

I 
I 

I 
1 

0EOQ

o 
O

I 
I 

I 
I 

=

o 
.

(N
 

4J 
H

4-
0 

0
o 

o
C

 
H-I

L0

0

1L
r)

0

000

0
04

_ 
E

C
0

o J4

O
 

_

0 (0
 

0cl
O

 
II

21b')

iL
.

0,-IO
v I

.H

(0

106

oIH

0

I'-' 
I

0C
o

00.II8
0)

0(D
oxH

lII8

00XHII

8

O
 

.

I 
I I 

I 
~

~
 

~ 
~ 

~~~~~~I 
I 

/ 
I 

I 
I 

I 
-

Q0'-

o 0
~

~
~

I 
0-1 

I 
I 

I 
I 

I 
M

 
-

I 
I

0o)
0L0;

I



I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
'~

'i

C

0ao 

0
0

O

I 
I 

-I
I 

I 
I 

r,- 
I

,.
_I I

I 
I

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I

O

0
0

0)

o 
H

o 
C

0
r
-
 

0C
)

o

C
O

 
IIX

 
x

C
NbOl

0'- 4

o-0
0(0D

L--

E
-

0,-vH

I 
I 

I

L
O

0

L
o

 

O
 

, 
HD

I

.4-J
'C)

I 
I 

I 
i 

L
H0

o,-I

¥z

0a)M04C',

o00xII

8
0)

0

c,

zr

o

o(0D

0xl1 XII8
0)

C0xI1

8

0

o0

I 
I

L
O

C
)

0

00 C
)

1
0

7



I 
I 

I 
I 

1 
I
 

I

0(
}

I 
I
' 

I

-I-I

I 
I 

I 
I 

I 
I 

I 
I 

I

C

0C
 

41

o 
Hp4

c4

o

I 
I 

I 
I 

I 
I 

I
o

L
n

0

00

Io

~003 
~ 

0

c
'
L

o0

z 
0

o- 
E

-

4

C
 

d0

042

0

c
t

4-J

,
- HIC
D

o0

L
0

to

>
 

zLCN

f(

.H
 

.*-4
_ 

>
~~r

0

108

¢D
O

.0
oHxcoI
I8

0)

0oII

(.0(.D HII

8

(
.

0X

8

Po

I 
I 

I 0-

(o©

i 
I 

C

'1 
I

-9

D
L



(a

rC

L
w

 I.

C
 

I 
C

N0

I 
I 

I 
I 

I

I 
I 

I 
I 

I

oI-
o

n
n
;~

 
,o

CoQ
0H

i

U
D

0coII8
a)

0(0

XII
r11

8
0)

o(00X(0rlII8

004

(NE
:

0~l
0~l

cq a)

H- 
0

C* 
U

o

II

.
I 

hI:h
O

~

ov

o0oC
O0_

/-

<
o(D

ZE
-v1

0

43
4-7 C

,

oo

1
0
9
;

w
0

,-{

I 
I 

I 
I 

I_

-~
~

~
 

_

_o04I 

'bhr



O

I 
I 

II

c~1D

I 
I 

I 
I

O

a 
1

-.

,-o
I ,

A
h

oc(J

' 
Z

 z

o 
%

J
O

 
_

-1
.

¥-p,r.0U ©
0 

H(0H0o 
I

co 
·e

H
 

X
 

CJI

_ 
a1)

.b

C
N

0

/-%
z9 E

I .,
0

0
J
 

O

000

C
OII8

oX (0

8

0(DXII8
a)

0

_I I



I 
I 

I 
I 

I', 
I D

0 aa

I 
I 

I 
a

I 
I 

I 
-

-]

I 
I 

I 
II 

I I
.

la
_ 

W~~~~~~~~~o

!
I, 

I

aaD

I 
I 

I 
I

L
O

U
-

.o

(4II

4-i
r
I

i)oo

0
0

coH
1

o(NH

·
 N

C
q

o

tt

N
 

C
.

I
.
 

<
o

coH
 

X
inC

NI

o
(

Hrt(0
_s

ov
U

)

O
F

Z

00

I 11

X O

8

oC
DXl
i II8

0)

0o

o

xII8
O

)

61

oo

Ij III



I 
I 

I 
I 

I 
I 

I

C0

co

0

1 
I 

I
o 

O
I ~. 

II 
I\ 

4I

.D
l

L
o

0
o00

acoH
-

ooDC
NO

 
C

-

;E
,--

.,i

tO
 

CI D
D

H
0
 

~ 
C

0 

C
0 

C

H
 

C
S

.

0

0(0

z

O

112

1 
I 

I 
I

00--1

I 
I 

I 
I 

I

0

X11II8
a,

o 0

8

O
0

o xtD II8

a)

o

I 
, 

,7 -O
0

09

(



I 
I 

I 
I 

I 
I 

I

E

0

*n 
C

,

o 
C

 
HII

C
4 4l

I 
I 

I 
I

o
L

)
0

In,

0-0
-

oN.D1-

0)
0

-
4 J

0) 
0

crD 
c

0
o 

I

X
 

L
n

04
(N

C

bO

oP,--

o

:zv-

(D(..C
o

000

113

C
OII8

a)
P:0oXII8
0)

0

(0
a,

r-x(o1l8

0)

00

i



I 
I 

III 
I 

I 
I 

I 
I 

I 
I

oO00o

.0
-I

0

)1
 

I 
I 

I 
I 

O
I 

I
f 

I 
I
' 

I

I 
I 

I 
I 

I 
I 

I 
I 

I 
I
. 

I 
I 

0C

o 
C

N
' 

zE-rvH
O

(0D
 

~ 
D

4-X 
4-

o 
1- 

C
).

o 
I

.II

C
O

D
 

~
IC

bO
 

r-bO

C
) 

--f 
U

~.

C
) 

O
 

4~-40

(OC
D

I 
I 

I 
I 

I 
I 

I 
I 

I 
I

O
 

O
 

O
 

0 
O

 
O

C
 

H4lIgP:C
,

O
H

11--(N'0-i

0ox0

8

(D
0oH

.II8
0)

ox(DII8
a)

0~

I 
I

O

000

1
1
4

d

I

I 
O



I 
I 

I 
I 

I 
I 

I

0

0

I 
I 

I
0

I 
II

I 
I 

I

I 
I 

I

I 
I 

I 
I 

I 
I 

I

0in0

o 
II

.-
co

H
 

X_W

C
N

-I
 

H

0

0ov

_ 
0E
D

o 
00

I 
I 

I
0CNI

L
n0

4
J

L4-IIP. 4

"a

I 
I 

, 
I 

I 
I 

I

o
0011..5

(I'-I

(D

xoDII

8

0
0

O

C
o_0E

C
lz.i.H

o

(D
0xH

lII

8
a)

(D

0l-II8
a0)

0
z?

00

C
o

0

O
o0o

I
-- 

-

I 
I 

I 
I

0 

lh
l



I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
0 l

0

I 
I 

I 
1 

01
I 

I 
I

I 
I 

V
 

I 
I 

I 
I 

I 
I 

I 
I 

L

aD
 

00
0
0

0

I 
I 

O
 

I 
I 

I 
I 

I 
I 

I 

o 
-

o 
o 

H
 

o 
o

o 
0 

0 
0 

0
HI'4 -C

-I

In0o

1
1
6

C
0H
l

0

O
D

0

fb
o-G

(Nz0.1
Z.,--v

v0
oo~i

0

cnC
)II

8

0(l0a)
,-X,-II'8

0,-0IIa,

a)

o 
j

II

C
N

1DI -C
o

,-.-

z-.H

0I-e
-

(0

I 
I

0

00 Q
 I

? 
o

I
 



I 
I 

I 
I 

I 
I 

I

o 
o

I 
d 

i

O

II 
.

A
 

I

I 
I 

I 
I 

I 
I 

I

C

o 0
o I

o 
o

co

I 
I 

I 
I 

I

0 
CN 

-
H

 
0

0 
0 

0
4-J o 

; 
rl

'11P
I

-- 
Z

o 
v E
H

.O
O

N
 

0

1 0:II 
I

3X

H
 

I
-' 

C(NI

"l 
bLO

0c-
B]C:I 

NzE-·M.li
_^

0D
(0

O

1
1
7

(0
0co--I

xIIci-o8

(.0 p-;xII8
a)

ox(DI'

8
0)

O
CCC)

1



O Re = 6.91 x 106 (a = 250)
R,L

A Re L = 8.21 x 106 (a = 240)

Q Re = 11.13 x 106 (a = 24 °0)
oL

- - - Modified Newtonian theory
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Figure 26. - Circumferential pressure-distribution for the
UTN2 at an alpha of 240.
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O Re 6.91 x 106 (a = 250)

ARe 8.21 x 106 (a = 240)w,L

[ Re 11.13 x 106 (a = 24°0)
--Modified Newtonian theor,L
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O Re ,L

i\ Re~,L

= 6.83 x 106 (a = 31° )

= 8.13 x 106 (a = 310)

[ Re ,L = 11.00 x 10 (a = 31.50)

---Modified Newtonian theory
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Figure 27. - Circumferential pressure-distribution for
the UTN2 at an alpha of 31° .
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O Re L

A Re , L

o Re ,L

= 6.83 x 106 (a = 31° )

= 8.13 x 106 (a = 310)

= 11.00 x 106 (a = 31.50)

--- Modified Newtonian theory
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Figure 27. - Concluded.
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/\ Re.L

[ Re, L
~,L

= 8.41 x 106 (a = 230)

= 11.43 x 106 (a = 20° )

---Modified Newtonian theory
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(a) x = 0.13L

Figure 28. - Circumferential pressure-distribution for
the UTN7* at an alpha of 230 (roughly).
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A Re = 8.41 x 10 (a = 23° )
",h

[] Re.L = 11.43 x 106 (a = 200)

--- Modified Newtonian theory
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A Re L = 8.43 x 106 (a = 300° )

O Re L = 11.42 x 106 (a = 300)

--- Modified Newtonian theory
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Figure 29. - Circumferential pressure-distribution
for the UTN7* at an alpha of 300.
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A\ Re I = 8.43 x 1.0 ((x = 3() ° )
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o Re L
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= 11.42 x .10 (z( = 30 )

---Modified Newtonian theory
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Figure 29. - Concluded.
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Figure 33. - The heat-transfer distribution for the leeward 
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an alpha of 35°. (Re . = 4.1 X 106.for data) 
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Figure 37. - Effect of alpha on the peak heat-
transfer measurement in the leeward pitch-plane
of delta-wing orbiters.
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Figure 38. - The local lee-meridian heat-transfer rates for
the fuselage as a function of alpha.
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Figure 38. - Concluded.
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Figure 39. - Pressure-distribution for the leeward pitch-
plane of the UTN2 as a function of Reynolds number.
Alpha of 310.
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Figure 40. - Pressure-distribution for the leeward pitch-
plane of the UTN2 as a function of alpha. Re = 8.1 x 10 .
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Heat transfer:
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Figure 41. - The maximum lee-meridian heating rate and the
maximum lee-meridian surface-pressure as a function of
alpha for the UTN2.
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APPENDIX A - GEOMETRY OF THE UTN2 AND THE UTN7

SECTIONS (WITHOUT CANOPIES)

Since both models have geometrically identical side views, this appendix

will be divided into three parts. The first part will contain a description

of the side view geometry. The planform and cross-section criteria for the

UTN2 and for the UTN7 will be described in the other two parts.

The coordinate system used to describe the models is a right-hand system

in which "x" lies along the longitudinal axis of the model; "y" describes the

vertical axis, such that the windward surface is positive; and "z", the width

axis. (Refer to Figs. 2, A-1, and A-2.) The coordinate system origin is located

at the apex of the nose (station 200). Note: all dimensions have been nondimen-

sionalized using the nominal length of the AEDC models, i.e., 25 inches, as a

reference. Therefore, when a coordinate parameter such as x is used in this

appendix, it corresponds to x/L as used in the body of this report.

Both nose sections are mated with the same fuselage at x = 0.38 (station

700). The mating cross section is made up of a flat horizontal bottom with

vertical linear sides and topped by a tangent semicircle. Both nose sections are

modified to fair "smoothly" into the common aft-fuselage.

Side-View Geometry

The side view of the present configurations (Fig. A-1) is similar to that

configuration 040A. The contour can be described by a series of elementary curves

which are tangent to each other. The geometry can be described as follows.
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Above the chine (y < 0), i.e., the leeward pitch-plane:

Region I (O < x < 0.04)

The leeward pitch-plane in this section is defined by an ellipse whose

equation is: y = - (1.89755 - 0.714369 (1.629805 - 25.x) 2)/25. (Region I)

Region II (0.04 < x < 0.1881)

The surface is linear in this region with the same slope as the 040A, i.e.,

a slope of 200. The governing equation is: y = - (8.853x + 0.91639)/25.
(Region II)

Region III (0.1881 < x < 0.3036)

This is the canopy region for the 040A and for the present configurations.

Without the canopy, this region is described by an ellipse, which is tangent to

the two linear segments bounding it. The governing equation for the ellipse is:

y = -((125.13142 - 1.30743 (7.5905 - 25.x) ) - 8.10774)/25. (Region III)

Region IV (0.3036 < x < 0.38)

The surface in Region IV is a horizontal linear segment, as was the case

for the 040A. Thus, y = - 0.12316 (Region IV)

Below the chine (y > 0); i.e., the windward pitch-plane:

One of the mating requirements is that the model bottom have a slope of -3.°

at x = 0.38 (station 700). It was decided that the windward pitch-plane would be

defined by an ellipse followed by a linear element of slope -3.°0

Region V (O < x < 0.19)

Region V is an ellipse whose equation is:

y = (0.819 - 0.0107 (8.75 - 25.x) 2)/25. (Region V)

At x = 0.19 the slope is -3.° .
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Region VI (0.19 < x < 0.38)

This is the straight line whose slope is -3.° . The equation of the line

is: y = (0.80512 + 0.05241 (25.x - 4.75))/25. (Region VI)

Planform and Cross-Section Criteria for the UTN2

Planform:

The forward part of the planform of the UTN2 is an ellipse whose axes ratio

is 5:2. The aft part of the planform is linear and tangent to the points of

maximum width of the forward ellipse. Refer to Fig. A-2. The governing relations

are:

Forward, 0 < x < 0.19:

+ z = (1.9362 - (1.936/4.75)2 (4.75 - 25.x)2½)/25. (a-l)

Aft, 0.19 < x < 0.38:

+ z = 0.0774 (a-2)

Cross sections:

Below the chine (y > 0), i.e., the windward surface:

The criteria in the design of the lower cross sections is that any section

taken in a horizontal plane (x - z plane) has the same geometry as the planform.

To obtain the surface coordinates, the planform outline is translated axially and

vertically so as to satisfy the side view geometry requirements. This results in

a cross section which is much "blunter" than an elliptic section. Refer to Figs.

A-2 and A-3,

To avoid a surface discontinuity about the point at which the side view be-

comes linear (x = 0.19, station 450) the horizontal cross sections below the
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y-coordinate at x = 0.19 are not required to match the planform silhouette.

Instead, a "fill-in" ellipse in the y - z plane tangent to the model sides a-t

the depth of the y-coordinate at x = 0.19 is used to complete the cross section.

Refer to Fig. A-4.

Above the chine (y < 0), i.e., the leeward surface:

For x < 0.19 the cross section is composed of a circular arc, a linear

element ("fall away" side), and a cap ellipse. In the region x < 0.04 the height

of the circular arc and the depth of the elliptic section are 0.004. The fall-

away angle of the linear side is given by (as illustrated in Fig. A-3):

ANGLE = 25. - (10./3.5) (25.x - 0.5) degrees (a-3)

The fall-away angle is the acute angle between a vertical and the linear element

of the cross section. The circular arc, the linear element, and the elliptic

section are mated such that the slope is continuous.

For the region 0.04 < x < 0.19 the height of the circular arc (CIR) is

(see Fig. A-3):

CIR = (0.1 + 0.05 (25.x - 1.))/25. (a-4) -

and the depth of the cap ellipse (ELL) is:

ELL = (25.ycl - 1.17051 - 0.3041 (25x - 1)/25. (a-5)

"Ycl" is the surface coordinate of the leeward pitch plane at the axial point of

interest. For x < 0.16 the fall away angle is given by:

ANGLE = 25. - (10./3.5) (25.x - 0.5) degrees (a-6)

For x > 0.16 the fall away angle changes to:

ANGLE = 15. - (15./5.5) (25.x - 4.) degrees (a-7)

At x = 0.19 a vertical flat side is initiated to accomodate mating with

the fuselage at x = 0.38. This vertical flat surface lengthens as x increases.
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For 0.19 < x < 0.25 the cross section is composed of a vertical flat element, a

circular arc, a linear fall away element, and a cap ellipse. Refer to Fig. A-4.

The governing relations are:

Height of the vertical flat side (yf):

yf = 1.14293 (25.x - 4.75)/118.7 (a-8)

And the height of the circular section:

CIR = 0.1 + 0.05 (25.x - 1.) - yf (a-9)

The fall away angle:

ANGLE = 15. - (15./5.5) (25.x - 4.) degrees (a-10)

Depth of the cap ellipse section:

ELL = (25.yc - 2.310885 + 1.167955 (25.x - 4.75)/4.75)/25. (a-11)

Note that the height of the circular section is reduced by the length of the

vertical flat side. In the region 0.19 < x < 0.25 the slope is continuous.

At x = 0.25 the height of the circular section becomes zero. Hence, for

0.25 < x < 0.38 the cross section is composed of a vertical flat side, a linear

fall away element, and a cap ellipse. The slope is continuous except at the

intersection of the vertical flat side and the linear fall away element. At this

intersection the slope changes by an amount "ANGLE", i.e., the fall away angle.

Refer to Fig. A-5. The governing relations are:

Height of vertical flat:

yf = 1.14293 (25.x - 4.75)/118.7 (a-12)

Fall away angle:

ANGLE = 15. - (15./5.5) (25.x - 4.) degrees (a-13)

And depth of cap ellipse:

ELL = (Ycl - 2.310885 + 1.167955 (25.x - 4.75)/4.75)/25. (a-14)
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At x = 0.38 these relations yield a cross section composed of a vertical

flat side tangent to a circular section, as desired for fuselage mating.

Planform and Cross Section Criteria for the UTN7

Planform:

The forward part of the N7 planform is an ellipse of axes ratio 8:2. The

aft part of the planform is linear and tangent to the points of maximum width of

the forward ellipse. Refer to Fig. A-6. The governing relations are:

Forward, 0. < x < 0.304:

*2 2 2 1-2
+ z = (1.936 - 1.936 (7.6 - 25.x) /7.6)2/25. (a-15)

Aft, 0.304 < x < 0.38:

+ z = 0.07-74 (a-16)

Cross sections:

For 0. < x < 0.304 the cross sections are composed of two elliptic halves

for which the ratio of axes satisfies the planform and the side-view coordinates

and which intersect with a vertical slope at the chine. Refer to Fig. A-7.

For 0.304 < x < 0.38 the cross sections are formed by a growing vertical flat

side (to satisfy fuselage mating requirements) and two elliptic halves such the

planform and side view are satisfied. The relations governing the size of the

vertical flat follow;

The distance from the chine to the upper end of the vertical flat (yu) is:

yu = 1.14293 (25.x - 7.6)/47. (a-17)

And the distance from the chine to the lower end of the vertical flat (yl) is:

yl = 0.34978 (25.x - 7.6)/25. (a-18)

The slopes are continuous for all points of the cross sections. Refer to Fig.

A-8. 146
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APPENDIX B - FLOW-FIELD TECHNIQUES

Inviscid Flow-Field

The local shock angles taken from shadowgraph photographs are compared

with tangent wedge, tangent cone, al.d parallel shock values in Fig. B-l.

Though there is considerable scatter in the measured shock-angles, the tangent

cone values are seen to best represent the results. The tangent cone values

shown in Fig. B-1 were computed using the following equation from Ref. 26

sin e
sin es sure 2 mn 

~1 (M sin al )

Centerline surface pressure measurements for Phase B space shuttle

configurations indicate surface pressures are generally between tangent cone

and modified Newtonian theory. Examples of these data for the McDonnell

Douglas Phase B orbiter are shown in Fig. B-2 which were taken from Ref. 27

Modified Newtonian theory was used to define the pressure distributions in

the present calculations of the inviscid flow-field. With both shock angle

and surface pressure calculated all other properties at the boundary-layer

edge were determined by crossing the shock using the oblique shock relations

followed by an isentropic compression to surface pressure.

Cross sections for the nose region of the UTN2 were approximated by

double radius blunt bodies and the crossflow velocity gradient obtained from

Fig. 20 of Ref.28. The crossflow flow velocity gradient for the elliptical

cross sections of the UTN7 were obtained by using the shock standoff distances

of Ref.29 and Equation (B-2) from Ref. 28. These crossflow velocity gradients

were then applied over the following regions in the boundary-layer calculations

based on the oil flow photographs.

155



Configuration Crossflow Region

UTN2 0 < x/L < 0.36

UTN7 0 < x/L < 0.30

Results obtained from the delta-wing flow-field correlations of Ref.

30 indicate that true crossflow is not achieved on a 49-deg sweep delta

wing at angles of attack of 50 deg or less. Furthermore, it was shown in

Ref. 21 that streamline divergence effects are significant on delta wing cen-

terline heating only at values of angle of attack significantly greater than

the apex angle, or in the case of.the present wing, 41 deg. For these reasons

no crossflow or streamline divergence was applied to the centerline boundary

layer calculations in the aft region.

Boundary-Layer Calculations

The boundary-layer calculations in the present report use the basic

methods which have become typical in data comparisons by Space Shuttle Con-

tractors (see Refs. 31 and 32). These are the Eckert Reference Enthalpy

method (Ref. 33) for laminar flow and the Spalding-Chi method (Ref. 34) for

turbulent flow. Crossflow corrections for nose region were obtained using

the crossflow velocity gradients as outlined and equations for equivalent sur-

face distances from Refs. 35 and 36. The differences between the theoretical

heat-transfer distributions for the UTN2 and for the UTN7 (Figs. 17 and 18,

respectively) when the boundary layer is turbulent are due primarily to

differences in the virtual origin, i.e., the onset of transition.

A comparison of present results for heat transfer rates and momentum

thickness Reynolds number with those obtained using a nonsimilar numerical

calculation (Ref. 37) and the same edge conditions are shown in Fig. B-3. The

heating rate comparison is good but a significant difference between the methods

occurs in the momentum thickness Reynolds number at the rear of the body.
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Configuration

0 UTN2

[ UTN7

tangent cone-
(eq b-l)

tangent /
wedge-\ /

parallel shock

40
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0
0 10 20 30 40 50 60 70 80 90

8 o
W5

Figure B1. - Comparison of the shock-angle measurements
with analytical calculations.
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