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A. TEMPERATURE COEFFICIENT OF SILICON JUNCTION TRANSITION

CAPACITY

The transition capacity of a PN junction is a useful nonlinear capacitor because it

is relatively insensitive to temperature changes.

In order to evaluate this capacity for purposes that require low-temperature sensi-

tivities, the capacity-versus-temperature characteristics of 10 Texas Instruments

Inc. (T. I.) 650C silicon junction diodes were measured. All measurements were made

at zero bias. At this bias the mean capacity was 141 44f, and the spread was from 56

to 256 44f. Two samples were measured over a temperature range of 25-100'C. The

others were measured over a range of 25-50'C. A typical curve is shown in Fig. XI-1.

It was found that the capacity varied linearly with temperature up to 50'C, after which

it increased at a slightly greater rate. The mean temperature coefficient of the

10 diodes was 642 ppm/oC and the spread was from 595 to 715 ppm/oC.

Measurements were made on a capacity bridge at an operating frequency of 1 mc.

To hold nonlinear effects to a minimum, a signal level of 20 my was used across the

diode. The temperature was varied by an oven which was designed for use with these

133

132

3.

o 131

~ 130

u C'
r

T I 605C JUNCTION DIODE

Fig. XI-1.

50

TEMPERATURE ('C)

Temperature dependence of
of a silicon junction diode.

60 70

the transition capacitance

This research was supported in part by Purchase Order DDL-B187 with Lincoln

Laboratory, which is supported by the Department of the Army, the Department of the

Navy, and the Department of the Air Force under Contract AF19(122)-458 with M. I. T.

121



(XI. TRANSISTOR AND DIODE STUDIES)
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diodes. The oven was also designed to shield the diode electrically, to minimize lead

length, to allow reasonably rapid data taking, and to allow for convenient diode changing.

For ease in changing diodes, the oven was built in three sections: a stem, a heating

element, and a spring. The disassembled oven is shown in Fig. XI-2.

The stem is a brass cylinder with a cable connector at one end. A small tube run-

ning along the axis of the cylinder connects the diode to the center conductor. The diode

lead fits into the tube, and contact is ensured by a setscrew.

The heating element is a copper bar that is heated by resistance wire wound around

it. The large mass of the bar serves to smooth out the effects of rapid variations in

ambient temperature. One end of the bar is machined down to slip into the stem. The

diode fits into a hole in this end.

The spring is used as a shim to give a tight fit between the diode and the walls of

the heating element. One lead of the diode is grounded by placing it between the diode

and the spring. In order to read the actual diode temperature as closely as possible,

the thermocouple is soldered to the spring.

A. H. Lipsky

B. TEMPERATURE DEPENDENCE OF FORWARD-BIASED JUNCTION DIODES

The temperature dependence of the static characteristic of a junction diode in the

forward-biased condition is important in many transistor and diode applications. Since

the most readily available published work (1) deals with this problem in an approximate

manner, a more complete analysis is given here.

The equation for the diode current of a plane-parallel junction diode (2) is

I = I s exp - (1)
KT

where I s is the saturation current of the diode, q is the electronic charge, K is

Boltzmann's constant, and T is the junction temperature in 'K. It should be pointed out

that many junction diodes, especially silicon diodes, do not follow this relation for

small values of the current. Under reverse bias the diode current does not saturate.

This fact is attributed to a surface leakage current which, for silicon, may be much

larger than the current flowing throughthe junctions. In forward bias, most junction
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TEMPERATURE (CC)

1, (a)

TEMPERATURE (OC)

Temperature coefficient of the forward-biased voltage of
junction diodes: (a) germanium diodes; (b) silicon diodes.

diodes follow the relation given by Eq. 1 over a wide range of current. At high currents,

the end resistance of the diode and enhanced injection cause departures from the char-

acteristic given by Eq. 1, and at low forward currents leakage may again become impor-

tant. We shall restrict our consideration of temperature dependence to the range in

which Eq. 1 is valid.

The saturation current of a junction diode has a temperature dependence given

by

Is = A exp [k(T. - To)

where A is the value of I at a reference temperature T (usually taken as 25 0 C), T.

is the temperature of the diode junction, and k is a constant determined in part by the

energy gap of the diode material. Thus the diode current is

I= A exp [k(T - T exp - - I
0 i A (KT)
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or

V K In - + (4)q A exp[k(T - T )

The temperature dependence of this voltage is

I
dV exp(-kAT)

dV kKT o K I
S+ - In w exp(-kAT) + (5)

AdT q exp(-kAT) + 1 q

where AT = T. - T . The temperature coefficient of the diode voltage is shown in
J o

Fig. XI-3 for both germanium and silicon diodes. The figure for each type consists

of a family of curves plotted as a function of temperature, with the ratio of diode cur-

rent (I) to saturation current (Ao ) used as the parameter.

The values used for the constants k were 0. 09 and 0. 14 for germanium and silicon,

respectively. These values are close to the theoretical values. The measured tem-

perature coefficients of the actual reverse current (Ico) of silicon diodes may be as

low as 0. 04. It is possible that these low values are attributable to the presence of

leakage currents. If these leakage currents are not sensitive to the polarity of the

applied voltage, the curves of Fig. XI-3 should be valid for high ratios of I/A o , but

not for ratios so high that end resistance becomes important. The two curves of the

family for silicon diodes for low ratios of I/A 0 are shown dotted, since the effects of

leakage current may not be negligible.

For large values of the factor I/Ao [exp(kAT)], Eq. 5 reduces to the simpler form

dV kKT [ K I
dT q T q l (6)
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C. CRYSTAL ADMITTANCE MEASUREMENTS

Measurements of the small-signal impedance parameters of types IN25, IN21,

IN23, and INZ6 silicon crystal rectifiers have been completed. The measurements
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extended over the frequency range from

WHISKER INDUCTANCE direct current to 3000 mc at a bias volt-
EXTERNAL
CAPACITANCE SPREADING RESISTANCE age of -0. 5 volt to +0. 25 volt. These

measur rents were undertaken in an
DIFFUSION TRANSITION REGION
RESISTANCE CAPACITANCE effort to determine the frequency at which

DIFFUSION the diffusion conductance and capacitance
CAPACITANCE

become seriously frequency-dependent

Fig. XI-4. A small-signal equivalent and, in general, to examine the commonly

circuit for point-contact accepted equivalent circuit of Fig. XI-4.
crystal rectifiers. The computations needed for sepa-

rating the barrier admittance from the

complete equivalent circuit are in prog-

ress. The method that is presently being used to determine the spreading resistance

as a function of bias is based on fitting a curve of the incremental resistance of the ideal

barrier to a plot of the total measured dc incremental resistance. A previous attempt

was made to obtain the dc incremental resistance from the static characteristics.

Unfortunately, at high frequencies and small forward biases the equivalent series

resistance of the combination of spreading resistance and barrier impedance is of the

same order of magnitude as the spreading resistance alone. Therefore their difference

is heavily dependent on the accuracy of the low-frequency spreading resistance deter-

mination; and it, in turn, hinges on the accuracy of the total incremental resistance at

low frequencies. Direct low-frequency measurement of total incremental resistance

versus bias will yield more accurate results than were achieved with the earlier graphi-

cal method.

R. B. Martindale, W. D. Jackson

D. POINT-CONTACT DIODE STATIC CHARACTERISTICS

The static characteristic of point-contact diodes is not fully understood. Recent

analyses (1, 2) that take into account the voltage drop across the N-type base semi-

conductor, as well as the surface barrier under forward-bias conditions, fail to ade-

quately describe diode behavior either in the low injection region, where the device

should be ideal, or in the moderate injection region, where departure from ideal

behavior begins. A hemispherical abrupt PN junction model is proposed which may

yield a better fit to the experimental data. The resistivity of the P-region, however,

is assumed to depend on the type of diode under discussion. Published discussions on

bonded diodes with heavily doped P-regions are available (3). Conventional or formed

diodes are considered to be PN junctions with a lightly doped P-region, in accordance

with some microscopically probed evidence reported by Waltz (4). A derivation of the
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static properties of this type of diode structure was made, and numerical computations

are being completed. A report including analyses of high injection in the forward

direction, large reverse-voltage conditions, and the behavior of the incremental

admittance versus frequency is being prepared.

R. E. Nelson
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