3,471 research outputs found

    Superconductivity-induced Phonon Renormalization on NaFe1x_{1-x}Cox_{x}As

    Full text link
    We report a study of the lattice dynamics in superconducting NaFeAs (Tc = 8 K) and doped NaFe0.97Co0.03As (Tc = 20 K) using Raman light scattering. Five of the six phonon modes expected from group theory are observed. In contrast with results obtained on iso-structural and iso-electronic LiFeAs, anomalous broadening of Eg(As) and A1g(Na) modes upon cooling is observed in both samples. In addition, in the Co-doped sample, a superconductivity-induced renormalization of the frequency and linewidth of the B1g(Fe) vibration is observed. This renormalization can not be understood within a single band and simple multi-band approaches. A theoretical model that includes the effects of SDW correlations along with sign-changing s-wave pairing state and interband scattering has been developed to explain the observed behavior of the B1g(Fe) mode.Comment: 10 pages; 6 figure

    Raman Scattering Study of the Lattice Dynamics of Superconducting LiFeAs

    Full text link
    We report an investigation of the lattice dynamical properties of LiFeAs using inelastic light scattering. Five out of the six expected phonon modes are observed. The temperature evolution of their frequencies and linewidths is in good agreement with an anharmonic-decay model. We find no evidence for substantial electron-phonon coupling, and no superconductivity-induced phonon anomalies.Comment: 5 pages, 3 figures, 1 tabl

    Effect of betaine and ascorbic acid in drinking water on growth performance and blood biomarkers in meat ducks exposed to heat stress

    Get PDF
    The aim of this study was to compare the effect of drinking water that contains various levels of ascorbic acid (AA) and betaine (BT) on growth performance and blood biomarkers in meat ducks exposed to heat stress. Six hundred and forty one-day-old Cherry Valley ducks were randomly assigned to one of seven treatment groups: i) control group, drinking water without ascorbic acid or betaine, ii) AA100, drinking water containing ascorbic acid at 100 milligrams per litre, iii) AA200, drinking water containing ascorbic acid at 200 milligrams per litre, iv) AA300, drinking water containing ascorbic acid at 300 milligrams per litre, v) BT400, drinking water containing betaine at 400 milligrams per litre, vi) BT800, drinking water containing betaine at 800 milligrams per litre, and vii) BT1200, drinking water containing betaine at 1200 milligrams per litre. The ducks were exposed to heat stress (11:00 to 17:00, 33 °C to 43 °C, relative humidity 70%, artificially controlled-environment houses) from the 22nd to 42nd days. Ducks from treatment groups AA300 and BT1200 displayed significantly increased bodyweight gains compared with those in the control group. Blood levels of glucose, and activities of aspartate aminotransferase and alanine aminotransferase in all treatment groups were significantly lower than those observed in the control group. Red blood cell count, platelet number, electrolytes and blood gas concentrations were significantly higher in all treatment groups compared with those in the control group. Blood pH levels in all treatment groups were lower than those in the control group. In conclusion, drinking water containing ascorbic acid or betaine improved the growth performance via biomarker homeostasis in blood of meat ducks exposed to heat stress.Keywords: body weight gain, blood lipid, red blood cell, electrolytes; blood gas, blood p

    Proteolytic degradation and potential role of onconeural protein cdr2 in neurodegeneration

    Get PDF
    Cerebellar degeneration-related protein 2 (cdr2) is expressed in the central nervous system, and its ectopic expression in tumor cells of patients with gynecological malignancies elicits immune responses by cdr2-specific autoantibodies and T lymphocytes, leading to neurological symptoms. However, little is known about the regulation and function of cdr2 in neurodegenerative diseases. Because we found that cdr2 is highly expressed in the midbrain, we investigated the role of cdr2 in experimental models of Parkinson's disease (PD). We found that cdr2 levels were significantly reduced after stereotaxic injection of 1-methyl-4-phenylpyridinium (MPP+) into the striatum. cdr2 levels were also decreased in the brains of post-mortem PD patients. Using primary cultures of mesencephalic neurons and MN9D cells, we confirmed that MPP + reduces cdr2 in tyrosine hydroxylase-positive dopaminergic neuronal cells. The MPP+-induced decrease of cdr2 was primarily caused by calpain-and ubiquitin proteasome system-mediated degradation, and cotreatment with pharmacological inhibitors of these enzymes or overexpression of calcium-binding protein rendered cells less vulnerable to MPP+-mediated cytotoxicity. Consequently, overexpression of cdr2 rescued cells from MPP+-induced cytotoxicity, whereas knockdown of cdr2 accelerated toxicity. Collectively, our findings provide insights into the novel regulatory mechanism and potentially protective role of onconeural protein during dopaminergic neurodegeneration. © 2016 Macmillan Publishers Limited All rights reserved.1

    Relationship between lower limb neuromuscular performanceand bone strength in postmenopausal women with mild knee osteoarthritis

    Full text link
    Objectives: To investigate whether neuromuscular performance predicts lower limb bone strength in different lower limb sites in postmenopausal women with mild knee osteoarthritis (OA). Methods: Neuromuscular performance of 139 volunteer women aged 50-68 with mild knee OA was measured using maximal counter movement jump test, isometric knee flexion and extension force and figure-of-eight-running test. Femoral neck section modulus (Z, mm3) was determined by data obtained from dualenergy X-ray absorptiometry. Data obtained using peripheral quantitative computed tomography was used to asses distal tibia compressive (BSId, g2/cm4) and tibial mid-shaft bending (SSImaxmid, mm3) strength indices. Results: After adjustment for height, weight and age, counter movement jump peak power production was the strongest independent predictor for Z (β=0.44; p<0.001) and for BSId (β=0.32; p=0.003). This was also true in concentric net impulse for Z (β=0.37; p=0.001) and for BSId (β=0.40; p<0.001). Additionally, knee extension force (β=0.30; p<0.001) and figure-of-eight-running test (β= -0.32; p<0.001) were among strongest independent predictors for BSId after adjustments. For SSImaxmid, concentric net impulse (β=0.33; p=0.002) remained as the strongest independent predictor after adjustments. Conclusions: Neuromuscular performance in postmenopausal women with mild knee OA predicted lower limb bone strength in every measured skeletal site

    Polyacrylamide ferrogels with Ni nanowires

    Get PDF
    Nickel magnetic nanowires (NWs) have attracted significant attention due to their unique properties, which are useful for basic studies and technological applications, for example in biomedicine. Their structure and magnetic properties were systematically studied in the recent years. In this work, Ni NWs with high aspect ratios (length/diameter ~250) were fabricated by electrodeposition into commercial anodic aluminum oxide templates. The templates were then etched and the NWs were suspended in water, where their hydrodynamic size was evaluated by dynamic light scattering. The magnetic response of these NWs as a function of an external magnetic field indicates a dominant shape anisotropy with propagation of the vortex domain wall as the main magnetization reversal process. The suspension of Ni NWs was used in the synthesis of two types of polyacrylamide ferrogels (FGs) by free radical polymerization, with weight fractions of Ni NWs in FGs of 0.036% and 0.169%. The FGs were reasonably homogeneous. The magnetic response of these FGs (hysteresis loops) indicated that the NWs are randomly oriented inside the FG, and their magnetic response remains stable after embedding. © 2019 by the authors.Russian Science Foundation, RSF: MAT2017-83631-C3-R, 18-19-00090Funding: This work was supported by the Russian Science Foundation grant 18-19-00090. Part of this work has been performed under the financial support of the Spanish Government under project MAT2017-83631-C3-R

    Combinatorial Roles of Heparan Sulfate Proteoglycans and Heparan Sulfates in Caenorhabditis elegans Neural Development

    Get PDF
    Heparan sulfate proteoglycans (HSPGs) play critical roles in the development and adult physiology of all metazoan organisms. Most of the known molecular interactions of HSPGs are attributed to the structurally highly complex heparan sulfate (HS) glycans. However, whether a specific HSPG (such as syndecan) contains HS modifications that differ from another HSPG (such as glypican) has remained largely unresolved. Here, a neural model in C. elegans is used to demonstrate for the first time the relationship between specific HSPGs and HS modifications in a defined biological process in vivo. HSPGs are critical for the migration of hermaphrodite specific neurons (HSNs) as genetic elimination of multiple HSPGs leads to 80% defect of HSN migration. The effects of genetic elimination of HSPGs are additive, suggesting that multiple HSPGs, present in the migrating neuron and in the matrix, act in parallel to support neuron migration. Genetic analyses suggest that syndecan/sdn-1 and HS 6-O-sulfotransferase, hst-6, function in a linear signaling pathway and glypican/lon-2 and HS 2-O-sulfotransferase, hst-2, function together in a pathway that is parallel to sdn-1 and hst-6. These results suggest core protein specific HS modifications that are critical for HSN migration. In C. elegans, the core protein specificity of distinct HS modifications may be in part regulated at the level of tissue specific expression of genes encoding for HSPGs and HS modifying enzymes. Genetic analysis reveals that there is a delicate balance of HS modifications and eliminating one HS modifying enzyme in a compromised genetic background leads to significant changes in the overall phenotype. These findings are of importance with the view of HS as a critical regulator of cell signaling in normal development and disease

    Quantum Communication

    Get PDF
    Quantum communication, and indeed quantum information in general, has changed the way we think about quantum physics. In 1984 and 1991, the first protocol for quantum cryptography and the first application of quantum non-locality, respectively, attracted a diverse field of researchers in theoretical and experimental physics, mathematics and computer science. Since then we have seen a fundamental shift in how we understand information when it is encoded in quantum systems. We review the current state of research and future directions in this new field of science with special emphasis on quantum key distribution and quantum networks.Comment: Submitted version, 8 pg (2 cols) 5 fig

    Squeezed States of the Generalized Minimum Uncertainty State for the Caldirola-Kanai Hamiltonian

    Full text link
    We show that the ground state of the well-known pseudo-stationary states for the Caldirola-Kanai Hamiltonian is a generalized minimum uncertainty state, which has the minimum allowed uncertainty ΔqΔp=σ0/2\Delta q \Delta p = \hbar \sigma_0/2, where σ0(1)\sigma_0 (\geq 1) is a constant depending on the damping factor and natural frequency. The most general symmetric Gaussian states are obtained as the one-parameter squeezed states of the pseudo-stationary ground state. It is further shown that the coherent states of the pseudo-stationary ground state constitute another class of the generalized minimum uncertainty states.Comment: RevTex4, 9 pages, no fingure; to be published in Journal of Physics

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy
    corecore