132 research outputs found

    In situ remediation of contaminated marinesediment: an overview

    Get PDF
    Sediment tends to accumulate inorganic and persistent hydrophobic organic contaminants representing one of the main sinks and sources of pollution. Generally, contaminated sediment poses medium- and long-term risks to humans and ecosystem health; dredging activities or natural resuspension phenomena (i.e., strongly adverse weather conditions) can remobilize pollution releasing it into the water column. Thus, ex situ traditional remediation activities (i.e., dredging) can be hazardous compared to in situ techniques that try to keep to a minimum sediment mobilization, unless dredging is compulsory to reach a desired bathymetric level. We reviewed in situ physico-chemical (i.e., active mixing and thin capping, solidification/stabilization, chemical oxidation, dechlorination, electrokinetic separation, and sediment flushing) and bio-assisted treatments, including hybrid solutions (i.e., nanocomposite reactive capping, bioreactive capping, microbial electrochemical technologies). We found that significant gaps still remain into the knowledge about the application of in situ contaminated sediment remediation techniques from the technical and the practical viewpoint. Only activated carbon-based technologies are well developed and currently applied with several available case studies. The environmental implication of in situ remediation technologies was only shortly investigated on a long-term basis after its application, so it is not clear how they can really perform

    The one health problem of azole resistance in Aspergillus fumigatus: current insights and future research agenda

    Get PDF
    Azole resistance is a concern for the management of diseases caused by Aspergillus fumigatus in humans. Azole fungicide use in the environment has been identified as a possible cause for development of resistance, which increases the complexity and number of stakeholders involved in this emerging problem. A workshop was held in Amsterdam early 2019 in which stakeholders, including medical and agricultural researchers, representatives from the government, public health, fungicide producers and end-users, reviewed the current evidence supporting environmental selection for resistance and to discuss which research and measures are needed to retain the effectiveness of the azole class for environmental and medical applications. This paper provides an overview of the latest insights and understanding of azole resistance development in the clinical setting and the wider environment. A One Health problem approach was undertaken to list and prioritize which research will be needed to provide missing evidence and to enable preventive intervention

    Enveloping Sophisticated Tools into Process-Centered Environments

    Get PDF
    We present a tool integration strategy based on enveloping pre-existing tools without source code modifications or recompilation, and without assuming an extension language, application programming interface, or any other special capabilities on the part of the tool. This Black Box enveloping (or wrapping) idea has existed for a long time, but was previously restricted to relatively simple tools. We describe the design and implementation of, and experimentation with, a new Black Box enveloping facility intended for sophisticated tools --- with particular concern for the emerging class of groupware applications

    Mutagenesis and Functional Studies with Succinate Dehydrogenase Inhibitors in the Wheat Pathogen Mycosphaerella graminicola

    Get PDF
    A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness

    Methylobacterium Genome Sequences: A Reference Blueprint to Investigate Microbial Metabolism of C1 Compounds from Natural and Industrial Sources

    Get PDF
    Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared. Methodology/Principal Findings The 6.88 Mb genome of strain AM1 comprises a 5.51 Mb chromosome, a 1.26 Mb megaplasmid and three plasmids, while the 6.12 Mb genome of strain DM4 features a 5.94 Mb chromosome and two plasmids. The chromosomes are highly syntenic and share a large majority of genes, while plasmids are mostly strain-specific, with the exception of a 130 kb region of the strain AM1 megaplasmid which is syntenic to a chromosomal region of strain DM4. Both genomes contain large sets of insertion elements, many of them strain-specific, suggesting an important potential for genomic plasticity. Most of the genomic determinants associated with methylotrophy are nearly identical, with two exceptions that illustrate the metabolic and genomic versatility of Methylobacterium. A 126 kb dichloromethane utilization (dcm) gene cluster is essential for the ability of strain DM4 to use DCM as the sole carbon and energy source for growth and is unique to strain DM4. The methylamine utilization (mau) gene cluster is only found in strain AM1, indicating that strain DM4 employs an alternative system for growth with methylamine. The dcm and mau clusters represent two of the chromosomal genomic islands (AM1: 28; DM4: 17) that were defined. The mau cluster is flanked by mobile elements, but the dcm cluster disrupts a gene annotated as chelatase and for which we propose the name “island integration determinant” (iid).Conclusion/Significance These two genome sequences provide a platform for intra- and interspecies genomic comparisons in the genus Methylobacterium, and for investigations of the adaptive mechanisms which allow bacterial lineages to acquire methylotrophic lifestyles.Organismic and Evolutionary Biolog

    Wage differentials associated with race between 2002 and 2014 in Brazil: Evidence from a quantile decomposition

    Get PDF
    Throughout the 2000s Brazil went through a great phase of economic development. The present study seeks to investigate whether this movement was accompanied by a reduction in inequality in the labor market, measured here by the wage gap between whites and non-whites. To do so, three cohorts of time (2002-2004, 2007-2009 and 2012-2014) were analyzed from the microdata of the National Household Sampling Survey (Pesquisa Nacional de Amostragem Domiciliar - PNAD). The applied method is the counterfactual Oaxaca-Blinder along with the Recentered Influence Function Regression (RIF-Regression) so that the main determinants of wages inequalities can be detailed throughout the salary distribution. Our results showed that wage gap (totals, due to observed factors and discrimination) are higher in the higher quantiles of the distribution, that is, in professions or activities with higher wages. The results also point to a salary approximation between the groups during the analyzed period, which was mainly due to observable characteristics, specially education levels. However, discrimination decreased only between the first and second triennium and in low magnitude. Apart from that, the main determinants of racial wage gap are returns to education, experience and professions considered unregulated (self-employment and informal workers)
    corecore