
����

Enveloping Sophisticated Tools into

Process�Centered Environments�

GIUSEPPE VALETTO AND GAIL E� KAISER kaiser�cs�columbia�edu

Rank Xerox Research Centre� � Chemin de Maupertuis� ����� Meylan� France
Columbia University� Department of Computer Science� New York� NY 	���
� United States

Columbia University Technical Report CUCS������� July ����

c����� Giuseppe Valetto and Gail E� Kaiser

Abstract� We present a tool integration strategy based on enveloping pre�existing tools without
source code modi�cations or recompilation	 and without assuming an extension language	 appli�
cation programming interface	 or any other special capabilities on the part of the tool� This Black
Box enveloping 
or wrapping� idea has existed for a long time	 but was previously restricted to
relatively simple tools� We describe the design and implementation of	 and experimentation with	
a new Black Box enveloping facility intended for sophisticated tools � with particular concern
for the emerging class of groupware applications�

Keywords� Tool integration	 workow	 computer�supported cooperative work	 computer�aided
software engineering

An extended abstract of this paper appears as Giuseppe Valetto and Gail E� Kaiser�

Enveloping Sophisticated Tools into Computer�Aided Software Engineering Environments�

IEEE Seventh International Workshop on Computer�Aided Software Engineering� July

����� pp� 	
�	��

�� Introduction

Process�centered environments and other task�oriented frameworks �see� e�g�� the
NIST�ECMA reference model ��	
� usually support dialogues between external
tools and the environment� which serves as a mechanism for integrating the tools
according to their roles in the work�ow� We identify three categories of integration
methods� with respect to their approach to adapting the tools to the environment

� This work was conducted while Mr� Valetto was a graduate student at Columbia University�
Prof� Kaiser was supported in part by Advanced Research Project Agency Order B��� monitored
by Rome Lab F���������C�����	 in part by National Science Foundation CCR��������	 in part
by the New York State Science and Technology Foundation Center for Advanced Technology in
High Performance Computing and Communications in Healthcare �����	 and in part by grants
from AT�T Foundation	 Bull HN Information Systems and IBM Canada Ltd� The views and
conclusions contained in this document are those of the authors and should not be interpreted
as representing the o�cial policies	 either expressed or implied	 of the US or NYS governments	
ARPA	 NSF	 NYSSTF	 AT�T	 Bull	 IBM or Xerox�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161439848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


�

� White Box� where a custom tool is developed as part of a particular environ�
ment or a pre�existing tool�s source code is modi�ed to match a framework�s
interface� Custom tools may be prohibitively expensive to develop� Changes
to pre�existing tools can often be implemented in a straightforward� repetitive
manner� but nevertheless the source code must be available � perhaps an in�
surmountable di�culty when integrating o��the�shelf tools from independent
vendors� The White Box approach is followed by several commercial message
buses� most based on either the Field broadcast message server ���
 or the
Polylith software bus ���
� PCTE ���
 and similar framework standards proba�
bly require more e�ort in tool adaptation� or a priori adherence to the standard
by vendors� but enable a higher scale of integration� The CORBA interoper�
ability standard ���
 is not speci�cally directed to environment frameworks� and
seems best suited to tools explicitly organized as servers � which relatively few
are at present�

� Grey Box� where the source code is not modi�ed but the tool provides its own
extension language or application programming interface �API� in which func�
tions can be written to interact with the environment� Relatively few tools�
aside from database management systems� provide such convenience �although
see ���
�� Dynamic linking coupled with replacement of standard libraries �e�g��
for I�O� works for some environments� e�g�� Provence ���
� concerned with mon�
itoring simple events such as �le system accesses� but it seems unlikely in the
general case that arbitrary tools would happen to �t the protocols of a task�
oriented framework� In particular� a process�centered environment requires that
task prerequisites be ful�lled prior to performing the task� so mechanisms to
detect that some tool has already completed a task are inadequate ���
�

� Black Box� when only binary executables are available and there is no extension
language or API� In this case� the environment must provide a protocol whereby
envelopes � extract objects and�or �les from the environment�s data repository�
present this data to their �wrapped� tools in the appropriate format� and pro�
vide the reverse mapping for updated data and tool return values� Envelopes
may also be used in conjunction with Grey and White Box methods� but are
mandatory for Black Box integration�

Our primary goal in this paper is to augment enveloping concepts and technology
to apply to a much wider array of tools� We concentrate on the Black Box model�
since it is often the only choice as well as the most challenging�
Typical Black Box enveloping technology expects the tool integrator to write a

script or program that handles the details of interfacing between the tool and the
environment framework� often both to respect the environment�s notion of task
and to access its data repository� as well as the actual invocation of the tool with
an appropriate command line and collection of any outputs and return values� In
the case of a process�centered environment� the process de�nition determines the
work�ow within which such a script or program may be executed� For example� the
task�s prerequisites may need to be satis�ed in advance and its obligations ful�lled



�

afterwards� The state of the on�going process execution usually sets the context
for providing parameters to the tool and determines what should be done with its
results�
This approach works well for tools� such as the standard UNIX toolset� that

accept all their arguments from the command line at invocation� read and write
some �les �whose �le system pathnames are given on the command line�� and return
a simple status code� Notice this does not preclude interactive tools such as word
processing and drawing systems� since the tool�s own user interface appears on the
user�s screen when the envelope executes the tool� The user may then enter text or
click menu items as desired� however� the granularity of access to objects��les from
the environment�s data repository is the entire tool invocation� In other words�
the nature of current Black Box enveloping technology requires that the complete
set of arguments from the repository is supplied to the tool at its invocation and
that any results to be returned to the repository are gathered only when the tool
terminates� so that the tool execution is encapsulated within an individual task�
There are numerous tools whose natural and�or convenient use doesn�t �t this

description� but may be highly desirable to integrate into process�centered envi�
ronments� including at least the following categories� Note these classes are not
disjoint�

� Tools intended to support incremental request of parameters and�or return of
�partial� results in the middle of their execution� such as multi�bu�er text editors
and interactive debuggers� Although such tools by de�nition allow submission
of an arbitrary sequence of the user�s choice of commands during their execu�
tion� when run in a stand�alone fashion� current enveloping technology does not
permit the sequence of commands to be guided� automated or enforced by a
task�oriented environment� and often even precludes retrieval of their parame�
ters from the environment�s data repository �e�g�� if the process engine controls
all access to the repository��

� Interpretive tools that maintain a complex in�memory state re�ecting progress
through a series of operations Lisp applications� such as �Knowledge�Based
Software Assistant� �KBSA� systems ��
� are classic examples� Such tools may
require severe start�up overhead and command substantial system resources
�thus we refer to them as �heavy�weight��� We are particularly concerned with
permitting di�erent users to submit tasks to the same tool execution instance�
even when that tool was not designed to support multiple users� One of our
goals is to extend a variety of single�user tools to �modest� multi�user operation�

� Multi�User tools� such as conventional database management systems that guar�
antee atomicity and serializability of separately transmitted but concurrently
executing transactions� An important subclass is Collaborative tools �often re�
ferred to as computer�supported cooperative work � CSCW � or groupware��
which abhor the conventional isolation model and directly support multiple
users interacting with each other� such as WYSIWIS �what�you�see�is�what�I�



�

see�� IBIS decision support� Fagan�style document inspection� desktop video
conferencing� etc� �see ���
� ��
 for more examples��

We introduce a Multi�Tool Protocol �MTP�� where Multi refers to submission of
multiple tasks to the same executing tool instance and enabling of multiple users to
interact with that same tool instance� Tool instances may operate for an arbitrary
period of time� far beyond the length of an individual task on behalf of an individual
user� thus we refer to the executing tool instance as �persistent� with respect to the
duration of the tasks submitted under the MTP protocol� MTP also addresses mul�
tiple platforms submitting tool invocations to machines other than were the user
is logged in� e�g�� when operating over a heterogeneous collection of workstations
and server computers but executables are available for only a particular machine
architecture or even only for a speci�c host� and multiple tool instances manag�
ing a set of executing instances of a tool� e�g�� when licensing limits the number
of instances that can operate at the same time� common with commercial server
licenses� MTP� as currently de�ned� treats tools in a Black Box manner� MTP has
been implemented as part of the Oz process�centered environment�

Section � supplies brief background information on Oz� Section � introduces a
tool modeling notation for specifying the category and special requirements of the
tool� this notation extends Oz�s previous facility� but could readily be adapted to
other process�centered environments with some notion of tool declaration� Then
we present our main work in Section �� covering the general ideas� persistent tool
sessions for four di�erent categories of tools� an extension of the Oz client�server ar�
chitecture for managingMTP tools �intended to be adaptable to other client�server
or peer�to�peer architectures�� the protocol for interaction between a process or task
control engine and executing tool instances� and �nally the structure of the tool
wrappers themselves �we will use the terms �envelopes� and �wrappers� inter�
changeably throughout the paper�� Then Section 	 describes four tool integration
experiments� one of which represents each of our categories� The paper concludes
by summarizing our contributions and outlining future work plans�

�� Oz Background

Oz ��
 is a process�centered environment framework that supports interoperabil�
ity among autonomously de�ned processes� where the participating instantiated
processes may reside on the same machine� the same local area network� or be geo�
graphically dispersed across the Internet or other wide area network� The processes
are all written in the same rule�based process modeling language� but the work�
�ows they implement may be arbitrarily diverse� so each instantiated process may
perform completely di�erent tasks using di�erent toolsets� The interoperability as�
pect is not particularly germane to this paper� which is primarily concerned with
integrating tools within a single process and leaves inter�process tool integration
for future work �see Section ���



�

Oz represents both product �project artifacts� and process �work�ow status� data
using a home�grown object�oriented database management system� a separate local
objectbase for each instantiated process� An object may contain zero or more
�le attributes� each typed as either text �ascii� or binary� The value of a �le
attribute within a local objectbase is a �le system pathname into a �hidden� �le
system speci�c to that objectbase� not intended to be accessed except through
Oz� Non��le attributes include the usual primitive values �strings� integers� etc���
references to child objects� and links to arbitrary objects elsewhere in the same
local objectbase�

Oz�s Shell Envelope Language �SEL� ��	
 is typical of current Black Box en�
veloping facilities �� which typically involve some scripting language� The process
engineer �or environment builder� writes what are essentially UNIX sh� csh or ksh
scripts� using added constructs that a translator expands into regular shell com�
mands to handle the details of interfacing between the tool and the environment
framework� An SEL envelope is associated with each primitive task �primitive tasks
may be grouped into aggregate tasks in the process de�nition ���
�� After param�
eters have been bound and other preliminaries completed� Oz�s process execution
service directs that the named envelope be invoked on the arguments speci�ed in
the task de�nition� including literals and�or object attributes� When the envelope
terminates� it returns a status code and �optionally� result values to the process
engine� at which point the pending task assigns the result values to objectbase at�
tributes and performs various operations based on the envelope�s status �typically
indicating success versus failure��

The mechanism described above is implemented within a client�server architec�
ture� one server per instantiated process� with process execution and object man�
agement services in the shared server and user interface and envelope invocation
facilities supported by each client ��
� The server sends envelope names and ar�
guments to the client responsible for that task� and then handles other clients in
a �rst�come��rst�served manner until the tool completes and the results arrive at
the front of the server�s request queue� Clients are always connected to their local
server� but may dynamically open and close connections to remote servers as il�
lustrated in Figure �� An infrastructure supports communication and coordination
among clients and servers� See �	
 for additional information�

�� Tool Modeling

Assuming both SEL�like enveloping and the new MTP protocol are available� the
process or other task�oriented execution service needs to specify which tools require
which protocol� In principle� every tool could be invoked via the new MTP protocol�
but we retained SEL forOz �or the equivalent facility for some other system� as the
default because we believe that MTP is complementary to SEL on a per�tool basis
together� they address with greater speci�city the peculiarities of diverse families
of applications� and the choice allows minimization of overhead balanced across a



�

server

OMS

IPC

I
P
C

server

TMControl

oms

ipc

Motif

pm

PM

oms

ipc

XView

pm

client
client

client

tool

tool
tool

Figure 	� Oz architecture



�

�tool�name� �� superclass TOOL�

� protocol � �MTP	 SEL
 �

path � �string� �

architecture� �sun�	 ���
 �

host � �string� �

instances � �integer� �

multi�flag � �UNIQUEUE	 MULTIQUEUE	

UNINOQUEUE	

MULTINOQUEUE
 �

�

�activity�name� � string �

��envelope�name� �parameters locks���

�activity�name� � string �

��envelope�name� �parameters locks���

���

end

Figure �� Modi�ed tool de�nition notation

number of factors �see Section ��� In general� we believe an approach to integration
based on multiple enveloping protocols is likely to achieve the greatest generality�
In the Oz implementation� the tool declaration notation has therefore been modi�

�ed to include the new portion shown between square brackets ������
�� in Figure ��
which is optional and may be omitted for SEL �some but not all of these �elds are
meaningful for SEL� as explained later� but defaults are assumed if they are not
provided by the environment builder��
The new �elds have the following meanings

� path indicates the pathname in the �le system where either the tool�s executable
or envelope resides �an envelope is not always needed for tool initialization when
using our MTP protocol� depending on the details of the tool�� For example�
an envelope might prompt the user for tool parameters not managed by the
environment �such as a database volume��

� host� an Internet address� is given when it is necessary to run the tool on a
speci�c host because of some restriction �perhaps due to pragmatic licensing
issues��

� architecture is used to indicate the machine architecture and�or operating
system on which the tool �and its corresponding envelope� is expected to run�
When the host is not speci�ed� the system refers to the architecture speci��
cation and separate environment instance�speci�c con�guration information� to
determine a corresponding default machine on which the persistent tool �and
its envelope� will be invoked�



�

In principle� an envelope forked on one machine could invoke a tool on another
using UNIX rsh or other remote job control� but tracking an operating system
process on another machine generally introduces an extra level of complexity in
the envelope� and there may be di�culties redirecting user I�O for interactive
tools� These issues are addressed in Section ����

� instances This speci�es the maximum number of copies of the tool that can
execute at the same time �� means there is no upper limit�� Independent of
licensing issues� this could be used to bound the system resources allocated to
a heavy�weight tool in all its instantiations�

� multi�flag This determines the behavior ofMTP in managing the interactions
between multiple human users and a persistent tool instance� We distinguish
among four categories of tools� with respect to their single�user versus multi�user
and single�tasking versus multi�tasking capabilities� through the cross�product
of two orthogonal dimensions

� UNI vs� MULTI MULTI �multi�user� indicates that the same instance
of the program can be shared by several users� whereas UNI �single�user�
allows only for isolated work of each user on his�her own executing instance
of the tool�

� QUEUE vs� NO QUEUE where concurrent �overlapping� execution
of multiple tasks with respect to the same tool instance is supported for
NO QUEUE �multi�tasking� but not for QUEUE �single�tasking��

It may seem counterintuitive to think of these dimensions as orthogonal� In the
case of MULTI QUEUE� i�e�� multi�user and single�tasking� multiple tasks on behalf
of di�erent users can share the same tool instance� but only one actually runs at
a time ��rst�come��rst�served�� For UNI NO QUEUE� i�e�� single�user and multi�
tasking� multiple tasks can execute simultaneously in the same tool instance
�perhaps in distinct �bu�ers� or other tool�speci�c contexts � the tool need
not be implemented using multi�threading or parallel processing technology��
but all must be on behalf of the same user�

Each of the declarations following the brackets speci�es the name of a task to�
gether with the �le name of an envelope� distinct from the one that started up
the tool �if any�� The task�speci�c envelope is invoked whenever the corresponding
task is submitted to the persistent tool� There are likely to be several qualitatively
di�erent tasks that can be performed using the same tool� so it is expected that mul�
tiple task�envelope mappings would be listed in the tool declaration� If so� multiple
instances of the same task or several entirely di�erent tasks can be submitted to
the same persistent tool execution� Formal parameters and locking information are
also listed �transaction management is outside the scope of this paper� see ��
� ���
��
The envelope speci�ed by the task handles the passing of arguments back and forth
to�from the environment as well as the details of interaction with a tool that is
already running�



�

These declarations appear in identical form in SEL speci�cations� but in that case
each envelope invokes a distinct tool instances to perform the task �and envelopes
may be grouped into the same tool declaration for abstraction reasons� without
necessarily employing the same external program�� We made no changes at all to
Oz�s process modeling language other than the tool declaration notation� and our
approach is intended to be orthogonal to the environment framework�s mechanisms
for work�ow de�nition and performance�

�� The Integration Protocol

We adopted what we call a loose wrapping approach� as opposed to the tight wrap�
ping currently e�ected in Black Box enveloping schemes� The latter relies on com�
plete encapsulation of all of the tool�s actions inside the envelope� whereas the
former is instead based on control of the tool�s behavior �from the viewpoint of
the environment�� with the enveloping facility intervening only as the need arises
during work�ow execution and�or upon detection of some external event relevant
to the environment� A typical example of the former is when the initiation of a
work�ow step �either automatically or through an environment command selected
by a user� requires the tool to perform some task� and of the latter when a tool
action saves some �les that should be recorded in the environment�s repository�
Control� as opposed to encapsulation� provides a means for long�lived and in�

termittent dialogue between external tools and the environment� meanwhile� the
tools continue their execution e�ectively detached from the environment frame�
work� Tight wrapping� on the other hand� governs all phases of a tool�s execution�
from the moment of invocation to termination� to perform multiple tasks using the
same tool� it must be explicitly and repeatedly instantiated �even if on behalf of
the same user� each time a task is assigned to the tool�
Our approach may be viewed as combining the advantages of conventional Black

Box enveloping and event noti�cation systems like Field and Yeast ���
� where
tools execute persistently but the server�s concern is only for events of interest
to other tools and there are no separate �environment commands� or �work�ow�
that control tools� The Forest extension of Field manages the propagation of event
noti�cations among tools according to �policies� ���
� analogous to Oz�s process
management services� and Provence is implemented on top of Oz�s predecessor
�Marvel�� but neither has any means for requiring satisfaction of task precon�
ditions� These systems also do not address one of our foremost requirements� to
integrate multi�user tools� and few message buses are concerned with groupware or
even support multiple users per bus� Buses internal to process�centered environ�
ment frameworks such as ConversationBuilder ���
 and ProcessWEAVER ���
 are
exceptions�
Once we established loose wrapping as the overall principle on which to base our

design� we analyzed the major capabilities needed to implement our tool modeling
facilities �described in the previous section�� We divide these functions into two
categories those generally concerned with Black Box integration� i�e�� the abilities



	


to invoke and terminate an instance of a tool on demand� to parameterize that
instance according to the single environment task� to transform objects from�to
the environment�s representation to�from that required by the tool� to support and
display the I�O �ow between the wrapped program and its user�s� � and those
especially necessary given the nature of the four tool categories of interest �i�e�� the
cross�product of UNI vs� MULTI and NO QUEUE vs� QUEUE�

�� The ability to limit the number of co�existing �executing� copies of a given tool
according to the speci�cations set out in the tool�s declaration� and to record
and service previously unsatis�ed requests as soon as possible�

�� The ability to exploit the persistence of MTP�tools� in order to share their in�
stances amongmultiple users � possibly emulating partial multi�user capability
for programs not usually employed for groupware�

�� The ability to coordinate overlapping requests for access to an instance of a
persistent tool from separate users� to avoid deadlocks and starvation on the
one hand� and of unintended concurrency of several activities for programs that
do not support any form of multi�tasking on the other�

�� The ability to record results of intermediate steps of the tool�s processing� during
the execution of each single task�

To ful�ll these requirements� we have introduced several extensions to Oz�s pro�
cess management services� Analogous extensions could be made to other environ�
ment frameworks�

���� Tool Sessions

To encompass both serial and concurrent access to a tool instance� we introduce ses�
sions� which de�ne the life�span of a persistent tool a session normally begins with
an OPEN�TOOL command and ends with a CLOSE�TOOL command� as illustrated in
Figure �� A session�s body is made up of a set of primitive tasks determined dynami�
cally as the users carry out their work within the environment� Each MTP�activity

in the �gure maps to an individual primitive task� Note that although the tasks
are listed in sequence� they could potentially overlap �for NO QUEUE tools��
tool could refer to any tool declared as MTP� The session identi�er distin�

guishes among simultaneously executing instances of the same persistent tool� so
that multiple users can choose to participate in a particular session opened by an�
other user �for MULTI tools�� Both arguments are selected from menus� Users can
ask to join an existing session by clicking the corresponding identi�er when issuing
an OPEN�TOOL command� The current implementation does not provide any sup�
port for access control� e�g�� specifying which users are permitted to� or are required
to� join a particular session� the latter is being addressed by current work in Oz

process modeling �see Section ��� There is also no support for providing parameters
for tool initialization from within the environment� which is less limiting than it



		

OPEN�TOOL tool �session��

�MTP�activityA� �argumentsA� �session�

�MTP�activityB� �argumentsB� �session�

���

CLOSE�TOOL �tool �session��

Figure �� Tool session template

sounds since the tasks that trigger incremental interaction with the tool usually
provide parameters from the environment�

Leaving a session is achieved with a CLOSE�TOOL command applied to a session
where there are still other active users� In this case� the CLOSE�TOOL does not kill the
tool instance� but only changes internal information about the association between
the user and the session� Termination of the program follows the CLOSE�TOOL

command of the last participant�
Besides setting the duration of a speci�c tool instance and providing a context

for sharing an application� sessions are central in several other functions supported
by our protocol� For example� they implicitly operate on what we call the Session
Queue of a tool� This feature allows us to satisfy the constraints posed by the
instances �eld of a tool declaration� accordingly limiting the maximumnumber of
copies of the program that can be active simultaneously� �Such a restriction could
be violated due to tool instances executing completely outside the environment�
resulting in tool invocation failures�� When OPEN�TOOL is issued� the system �rst
checks whether the request is satis�able given this constraint� If the limit has
been hit� the request is not serviced� but is recorded in the Session Queue� when
an already running session is terminated� the next queue entry is extracted and
automatically initiated �the user is e�ectively noti�ed when the user interface of
the tool pops up on his�her screen��

Our design also allows for a special case where it is possible to use a persistent
tool without being compelled to issue the OPEN�TOOL and CLOSE�TOOL commands
every time� via an implicit atomic session that consists of only a single task� Atomic
sessions are instituted by the system� transparently to the user� when a user issues
a task associated with an MTP tool but has not previously opened or joined a
session� In that case� an implicit OPEN�TOOL command is automatically executed
and the new tool instance is marked as atomic by the environment� so that no other
tasks �or OPEN�TOOL�CLOSE�TOOL commands� can be directed to it� When the task
�nishes� the tool is shut down automatically�

Our sessions idea leads to a number of questions on how di�erent users could�
practically� participate in the same session of a persistent tool� thus exploiting the
same resources and the collected state of the executing tool� In our MTP design�
we stressed the facets intended to accommodate in a natural way those applications
that are inherently designed for collaboration� or � in some sense an even more



	�

User �� OPEN�TOOL �tool� �session S��

Session S� begins

User �� �tool� �MTP�activity A� �argument set A�

Activity A begins

���

Activity A ends

User �� �tool� �MTP�activity B� �argument set B�

Activity B begins

���

User �� �tool� �MTP�activity C� �argument set C�

Activity C is stored in Activity Queue of S�

�Activity B continues


���

Activity B ends

Activity C begins �automatically resumed


���

Activity C ends

User �� CLOSE�TOOL �tool� �session S��

Session S� ends

Figure �� Example session of a UNI QUEUE tool

ambitious goal � to exploit in a multi�user context those tools that� even if not
commonly employed in that manner� the tool integrator considers adaptable to and
promising for collaborative activities�

Our four categories of tools provide a �exible solution to these problems the valid
values of the multi�flag �eld within the tool modelling speci�cations represent and
enforce in the protocol four working models� intended to cover as widely and as
precisely as possible the behaviors and requirements of various classes of persistent
tools�

UNI QUEUE is the most basic category with it� we intend to accommodate applica�
tions that are strictly single�user and that would not adequately support concurrent
operations deriving from simultaneous MTP activities� Therefore each instance of
such tools is reserved exclusively to the user who requested it in the �rst place�
via an OPEN�TOOL command� and the body of the session is made up of a simple
sequence of activities that are never permitted to overlap� A generic example can
be seen in Figure ��

The most signi�cant di�erence between MTP�s UNI QUEUE and SEL is that multi�
ple operations can be sent to the same copy of the tool� under the complete control



	�

User �� OPEN�TOOL �tool� �session S��

Session S� begins

User �� �tool� �MTP�activity A� �argument set A�

Activity A begins

���

User �� �tool� �MTP�activity B� �argument set B�

Activity B begins

���

Activity A ends

User �� �tool� �MTP�activity C� �argument set C�

Activities B	 C carried out in parallel

���

Activity C ends

���

Activity B ends

User �� CLOSE�TOOL �tool� �session S��

Session S� ends

Figure �� Example session of a UNI NO QUEUE tool

of the process execution engine� by exploiting the newly introduced concept of Ac�
tivity Queues each UNI QUEUE session is associated with an Activity Queue� which
holds in �rst�come��rst�served order the tasks waiting to take control of the tool
instance�

UNI NO QUEUE is intended to satisfy more complex integration requirements and to
allow for more operational �exibility� Again� each tool instance is reserved for just
one user� but the full exploitation of the inherent multi�tasking �or multi�bu�er�
capabilities of the tool is supported� by directing to the tool multiple simultaneous
activities� The outcome is exempli�ed by the generic session illustrated in Figure 	�

If a tool is not inherently multi�user �as is the case for most current tools�� but
is declared MULTI QUEUE� only the most rudimentary form of sharing is possible
di�erent users are allowed to join the same session� and therefore to access the
same executing tool instance� but they must �take turns� �if they happen to issue
requests that overlap in time� they are forced to wait in the Activity Queue until
the previous task is �nished� Note that users whose requests are placed in the
Activity Queue may still execute other tasks � or decide to abort and try again
later �Oz�s XView and Motif interfaces allow a user client to context�switch at will
among in�progress tasks� and other environments generally do likewise�� We show
a hypothetical session for a MULTI QUEUE application in Figure ��



	�

User �� OPEN�TOOL �tool� �session S��

Session S� begins

User �� �tool� �MTP�activity A� �argument set A�

Activity A begins

���

User �� OPEN�TOOL �tool� �session S��

�User � joins session S�


���

Activity A ends

User �� �tool� �MTP�activity B� �argument set B�

Activity B begins �on borrowed session S�


���

User �� �tool� �MTP�activity C� �argument set C�

Activity C is stored in Activity Queue of S�

���

Activity B ends

Activity C begins �automatically resumed


���

User �� CLOSE�TOOL �tool� �session S��

�User � leaves session S�


���

Activity C ends

User �� CLOSE�TOOL �tool� �session S��

Session S� ends

Figure �� Example session of a MULTI QUEUE tool



	�

User �� OPEN�TOOL �tool� �session S��

Session S� begins� system component � dispatched to User �

User �� �tool� �MTP�activity A� �argument set A�

Activity A begins

���

User �� OPEN�TOOL �tool� �session S��

�User � joins S�
� system component � dispatched to User �

User �� �tool� �MTP�activity B� �argument set B�

Activity A	 B are carried out in parallel

by components �	 � respectively

���

User �� �tool� �MTP�activity C� �argument set C�

Activity C is stored in Activity Queue of

system component �

���

Activity B ends

Activity C begins �automatically resumed


���

Activity A ends

User �� CLOSE�TOOL �tool� �session S��

�User � leaves session S�
� system component � is killed

���

Activity C ends

User �� CLOSE�TOOL �tool� �session S��

Session S� ends� all existing system components are killed

Figure 
� Example session of a MULTI NO QUEUE tool

Although limited� this form of sharing can be usefully exploited in various collab�
oration scenarios� for example� by multiple users committed to take care of di�erent
sequential stages of the same complex� long and composite software task� in which
all must employ the same external program� We can then think of the MULTI QUEUE

tool as a semi�permanent global service for these users�

The MULTI NO QUEUE class was conceived to accommodate inherently multi�user
systems� including groupware� taking into account their architectural and functional
peculiarities� MTP ensures in this case that every OPEN�TOOL command issued by
some user in the context of the same session maps to the instantiation of a portion
of the same multi�user system �e�g�� a client in a client�server architecture�� which
is assigned to that user� See Figure � for an outline of a hypothetical session�



	�

server

OMS

IPC

I
P
C

TMControl

oms

ipc

Motif

pm

PM

oms

ipc

XView

pm

tool

tool

oms

ipc
pm

Proxy Client

User Client
User Client

XMOVE

Figure �� New Oz architecture

While MTP is in charge of directing users� work items to MULTI NO QUEUE tools�
it is the intrinsic multi�user nature of these applications that de�nes whatever
sharing and concurrency policies are necessary to operate in the multi�user and
possibly collaborative context� the transparency or visibility � or lack thereof �
among user clients with respect to their activities and data depends solely on the
nature and the purpose of the tool� which may support collaboration or enforce
isolation� The integration protocol� per se� is not concerned with these issues �see
Section 	����

���� Architecture

The implementation architecture is necessarily speci�c toOz� but we anticipate that
a similar approach would apply to other multi�user process�centered environments�
We divided Oz�s clients into two categories� new proxy clients �or just proxies�
and the original user clients �� MULTI QUEUE operation �with respect to a single
site� is depicted in Figure �� Both user clients and proxy clients support SEL
�see Section ��� Proxy clients introduce into the architecture a new kind of long�
lived entity� with the role of spawning� managing� and achieving the integration of



	�

persistent tools� User clients are always associated with human users of the system�
who invoke and close them at will� and therefore they cannot be relied on to support
the life cycle of a persistent tool instance� The Oz server persists inde�nitely but
provides process execution and object management services and most aspects of
tool management discussed in this paper� but is intentionally not directly involved
with tool invocation �in part for performance reasons� see ��
��

In our design� the session management commands �OPEN�TOOL and CLOSE�TOOL�
are issued by user clients on demand by human users and executed by the appropri�
ate proxy client� installed on the machine determined by the host and architecture
data in the MTP TOOL declaration and� if both �elds are null� then on the same
machine where the Oz server is running� Subsequent tasks submitted to the same
application may be initiated from a user client�s user interface� but are delegated
to the proxy client� The same proxy manages all persistent tools executing on the
same host �with respect to tasks managed by the same Oz server��

Proxy clients do not need to interact directly with any human operator� so no user
interface is needed� However� they must manage the user I�O to�from persistent
tools� This involves redirection of simple textual I�O between the tool and the user
client� and more signi�cantly the ability to display the tool�s own graphical user
interface �GUI� on the user�s monitor� Most inherently multi�user tools are able to
dispatch private instances of their user interface to each user� but for other tools
�e�g�� originally single�user tools extended by MTP to a modest form of groupware�
we exploited the public�domain xmove utility ���
� which transfers the GUI of a tool
across workstations and X terminals� Resetting the X Windows DISPLAY variable
would be insu�cient� since the GUI instance has to start on one monitor for one
user� then move to another monitor for a second user� etc� without reinitializing
the tool�

Another job assigned to proxies is to spawn� manage� and communicate with aux�
iliary programs called watchers� each of which operates in the temporary directory
for a tool instance and �notices� any �les created or updated by a tool� These �les
are mapped to task arguments according to a con�guration �le constructed by the
task envelope� The �les can then be transferred back to the environment when the
task is completed�

Besides the capability for the same tool instance to handle multiple tasks� another
major di�erence between a SEL�like protocol and MTP�s UNI cases� at least with
respect to environment frameworks similar to the Oz architecture� is forking of the
envelope and� indirectly� the tool by a proxy client � often not on the same machine
as the user client � which could result in unnecessary communications overhead�
MTP could easily be modi�ed to default to a proxy on the same machine as the user
client� and even some of the user and proxy client functions could be merged so that
a separate proxy would not be needed when host and architecture speci�cations
are not supplied and�or match the user client machine�



	�

���� Task Execution

The most signi�cant remaining issue that must be resolved to complete the design
of our new protocol is the way in which the execution of envelopes is accomplished�
in the manner of the loose wrapping concept� A typical MTP task execution steps
through the sequential phases listed below

�� A reservation phase� in which a tool session is acquired on behalf of the task
and its associated user� This is carried out in according to the session mechanism
explained in Section ����

�� An initialization phase� in which the objects��les from the environment are
made available to the tool and any other parameterization functions are per�
formed� We have employed for this purpose a standard envelope template� which
accepts as its parameters pathnames corresponding to �le attributes in Oz�s
object management system� the path to a dedicated temporary directory that
is created when the tool is started up and within which it normally operates�
and some additional information used for internal housekeeping� The �lename
of this envelope is given by the tool declaration in its envelope�name �eld�

The envelope is forked by the relevant proxy client� which sets up UNIX pipes
for communication� The �rst job of the shell script is to copy the �les into
the tool�s dedicated directory� thus making them visible to the tool� then any
series of shell commands can be inserted� to perform whatever customization
is necessary� �nally� via the pipes� a sequence of text messages is sent to the
proxy� to be displayed to the user inside a task�speci�c pop�up window� These
messages may include the values of primitive attributes from Oz�s objectbase�
and are intended to direct the loading of the �les from the temporary directory
into the memory of the application and otherwise instruct the user as to what to
do� For example� the text presented in the window might indicate the command
line or the mouse action that the user should enter to get started on the task�
although the details of performing the task itself are usually left to the user�s
own devices�

Although we would have preferred a totally automatic loading procedure� as
accomplished by SEL� that it is hardly possible given the inherent restrictions
of the Black Box model MTP tools are already running before the execution of
any envelope �therefore they cannot be initialized according to the individual
tasks� and� in general� only human users can directly interact with them through
their user interface� moreover� we cannot assume any special facilities on the
part of the tool for simulating user input� and redirecting �stdin� is generally
insu�cient for GUI tools� However� the envelope� via messages to the pop�up
window� may still provide assistance and guidance to the users in a practical
and convenient manner�

A Grey Box variant of MTP could overcome this drawback� since the tool�s
programmable facilities could act in collaboration with the envelope� producing



	�

and exchanging messages that would be interpreted as directives to be executed
by the tool� �Some Grey Box experiments have been conducted using SEL� see
Section 	���� In the White Box case� this issue can usually be avoided entirely�

�� An operation phase� which includes free use of the tool with all its features�
including manipulation of the loaded data� There is no restriction on the use
of the tool� because it is accessed directly and not through any intermediary
medium� The only requirement of the MTP protocol �that cannot� however� be
enforced in the Black Box case� is that the execution must not be terminated
through the tool�s own internal command� menu button or procedure� but only
via the environment�s CLOSE�TOOL command� In addition� both MTP and SEL
assume that users do not access the �hidden� �le system sereptitiously� e�g��
loading �les into the tool outside the work�ow� although there is nothing beyond
an obscure organization to prevent them from doing so�

�� One or more data recording phases may interleave with other actions� when�
ever the user saves temporary results of the work he�she is performing �the tool
updates the copies of the �les kept in its own temporary directory� and not
those internal to the environment�� Such events are monitored by the proxy
client�s watchers� A table of updated �les is maintained in the proxy and used
in the next phase�

	� The conclusion of the task� at which point control of the tool is released �with
respect to this task�� The user is required to designate the task�s completion
as either a success or a failure� via buttons in the pop�up window� and the
data resulting from the execution is stored back in the environment only if the
user considers the task successfully completed�

SEL expects the envelope to automatically capture the return code of the tool
after the user decides to close it� but in MTP the tool remains inde�nitely active�
therefore the only means of ending an individual task is to let the user decide
when his�her work is �nished and to provide a way to communicate this fact
�and how to handle the results� to the envelope� Other di�erences are that SEL
�le updates are permanent� regardless of the success or failure status actually�
SEL may return any value in a range determined by the encapsulating task�
each of which will result in di�erent consequences following the task� A similar
facility could be added to MTP�

���� Wrappers� Structure

Envelopes provide a very �exible approach to tool integration� Consisting of either
standard scripts in some scripting language �as we have employed for MTP�� or
augmented variants of the scripting languages that provide primitives to handle in�
terfacing to the environment and its data repository �as in SEL� � or possibly even
written in a conventional programming language� wrappers o�er programmable fa�



�


cilities that can handle the di�erent needs and idiosyncratic properties of a wide
range of external applications in a convenient and uniform way�

MTP uses two kinds of envelopes the �rst is executed in response to the OPEN�TOOL
command� whereas the second operates at the granularity of the individual task�
The latter is concerned mainly with preparing and loading the data that must be
processed by the program during the associated task� the former is used to perform
customization of the tool� in order to present it to the user�s� in the correct state�
in relation to the characteristics of the system and the work model indicated by the
multi flag speci�cation� This kind of customization script is usually very simple
� no more than a few lines of straightforward shell commands � but sometimes
may be quite complicated� accounting for complex interactions with the environ�
ment through watchers� and sometimes even for the invocation of other auxiliary
�simpler� scripts that perform supplementary bookkeeping or actions in response
to particular states of the application� An example of a relatively complicated case
is shown in Figures � and ���

The envelope writer must be a relatively skilled shell programmer with some
knowledge of the purpose and the functions of the wrapping protocol to be able to
easily set up the scripts� The burden might be lowered somewhat if MTP were to
extend the scripting language with special�purpose primitives� perhaps somewhat
di�erent sets to accommodate each of the four work models� However� the expe�
rience gained with SEL shows that even with such primitives the scripts are not
exactly trivial� since the intrinsic speci�city of the applications command ad hoc
treatment for each case�

Language extension would be useful mainly to abstract and parameterize those
operations that must be carried out in a repetitive manner for any application� this
seems more plausible with the data interface between the tool and the environment�
rather than with the adaptation of their reciprocal behavior� Consider the example
shown in Figures �� and �� some of the shell commands� those marked with the
comment � always� must always be present in any MTP task�related envelope�
others� indicated by the comments that contain the words FILE parameters� are
needed to handle certain types of incoming data� and are similar but not identical
in all the envelopes� These two sets of commands together contribute to preparing
the data involved in the activity�

The other shell commands� marked by the � tool�dependent comments� are
concerned with operating the tool towards the goal of the task at hand� It is clear
that in the general case the size and the complexity of this last set is dependent on
the wrapped application� of the supported work model� and �especially if a lot of
direct interaction with the user is necessary� of the task to be performed� while the
former two sets are relatively independent of all these factors� hence it would be
easier to invent scripting�language extension facilities to express them� However�
it would also be possible �and desirable� to de�ne some ad hoc constructs for use
in those tool�dependent statements that communicate to the user the actions that
he�she should perform� e�g�� to carry out the loading of task arguments into the
tool instance� during the initialization portion of an MTP task �see Section �����



�	

���bin�sh

�initialize variables

SERVERPID���

CLIENTPID���

� look if already hooked to the environment directory

FOUND��find � �name linkfile �print�

� if environment dir� is not found

if � �x�FOUND� � �x� � �no marvelserver active

then

� prompt the user a request to

� provide path for the environment dir�

PFOUND��find � �name prompt �print�

if � �x�PFOUND� � �x� �

� wait for reply and then start server � client

then

echo �type the path for the environment�� �� fakeprompt

echo � �� fakeprompt

mv fakeprompt prompt � create prompt file in the

� tool dir� to the benefit

� of the watcher

� Watcher takes care of the prompt to obtain an

� answer from the user� look out for that answer

FOUND��find � �name reply �print�

while � �x�FOUND� � �x� �

do

sleep �

FOUND��find � �name reply �print�

done

� read the reply file with the path

� for the environment dir�

read ENVDIR � reply

� create a link to the environment dir�

ln �s �ENVDIR linkfile

rm reply

� invoke marvel server and a client

echo � �� clients

�proj�oz�current�bin�marvelserver linkfile �

SERVERPID���

echo �SERVERPID ��serverpid

sleep �

�proj�oz�current�bin�marvel �x linkfile �

CLIENTPID���

Figure � Example initialization script for a multi�user client�server tool	 Part �



��

� prompt is already provided by another instance of

� marvelscript� wait for it to start up the server

� and then start up a client only

else

FOUND��find � �name linkfile �print�

while � �x�FOUND� � �x� �

do

sleep �

FOUND��find � �name linkfile �print�

done

�proj�oz�current�bin�marvel �x linkfile �

CLIENTPID���

read CLIENTNUMBER � clients

CLIENTNUMBER��expr �CLIENTNUMBER � ��

echo �CLIENTNUMBER � clients

fi

� server is already active� go ahead and start a client

else

�proj�oz�current�bin�marvel �x linkfile �

CLIENTPID���

read CLIENTNUMBER � clients

CLIENTNUMBER��expr �CLIENTNUMBER � ��

echo �CLIENTNUMBER � clients

fi

CURRDIR��pwd�

� trap a request to kill this marvel component and

� invoke closemarvelscript to take care of this task�

trap ��u�astor�gv�THESIS�Rivendell�oz��closemarvelscript �CURRDIR

�CLIENTPID� exit �� �

wait

Figure 	�� Example initialization script for a multi�user client�server tool	 Part �



��

In Figure �� these messages are implemented simply with echo commands pre�xed
by a common string �������� the output is redirected through pipes maintained
between the envelope and the proxy client that initiated it� and the proxy is in
charge of displaying the messages to the user in the pop�up window that is associ�
ated with each task� One could certainly imagine more sophisticated facilities for
guiding the user� but where the tool integrator would prefer to avoid implementing
them in shell�

�� Integration Examples

To test the facilities described in the previous sections� we have used several avail�
able in�house applications and o��the�shelf tools� The purpose of these tests was
to gain con�dence in the viability of the new MTP protocol� and in particular to
challenge its ability to accommodate a wide range of variability in the nature of the
wrapped applications�
Therefore� we have tried to de�ne the degree of integration that can be reached

and to identify limitations �either linked to the characteristics of the tool category
under examination� or speci�cally to the adequacy of our support to the single
cases� or unresolved problems we need to address during future development� The
applications we used as examples were

� idraw as a UNI QUEUE tool� where tasks are queued for one�at�a�time execution
�the same user may submit tasks from multiple clients� and the user interface
is transferred among monitors as needed��

� emacs as a UNI NO QUEUE tool where steps are not queued but may overlap
�typically on a single monitor��

� A Lisp�based natural language processing system called FUF as a MULTI QUEUE

tool� where steps are queued for one�at�at�time execution �and the UI is trans�
ferred among users participating in the same session as needed�� and

� Marvel� the predecessor of Oz� as a MULTI NO QUEUE tool �that supplies its
own clients for multiple users��

���� UNI QUEUE	 idraw

idraw ���
 is a popular public�domain drawing tool� commonly used to develop
pictures and diagrams stored in a postscript form� it provides an intuitive graphical
user interface employing a well�known paradigm based on mouse movement and
menu selection to operate on a virtual canvas shown within an X window� It
is intended to be single�user� although idraw does support multiple bu�ers� we
ignored that feature here� and treated the system as if it were necessary to save the
current document before loading a di�erent one� The limited use of idraw serves



��

���bin�ksh

�input parameters�

� �� tool dir� ������ MTP additional parameter

� �� C file ������ NOTE� FILE parameter

� �� analyze status����� Literal

� �� analyze log file��� NOTE� FILE parameter

� �� compile status����� Literal

� � compile log file��� NOTE� FILE parameter

� �� rule identifier���� MTP additional parameter

� �! client identifier�� MTP additional parameter

cp �� �� � �� � copy all FILE parameters in the tool dir�

CFile��basename ��� � for all the file parameters

AFile��basename ��� � for all the file parameters

CompileFile��basename � � � for all the file parameters

CPath��echo ����CFile� � for all the file parameters

APath��echo ����AFile� � for all the file parameters

CompilePath��echo ����CompileFile� � for all the file parameters

FLISTDUMMY����filelisttmp � always

FLIST����filetable � always

touch �FLISTDUMMY � always

echo �! �� �CFile �� �� �FLISTDUMMY � for all the file parameters

echo �! �� �AFile �� �� �FLISTDUMMY � for all the file parameters

echo �! �� �CompileFile � �� �FLISTDUMMY

� for all the file parameters

FOUND��find �� �name filetable �print� � always

if � �x�FOUND� � �x� � � always

then � always

mv �FLISTDUMMY �FLIST � always

else � always

FLISTCAT����mergelist � always

cat �FLISTDUMMY �FLIST � �FLISTCAT � always

rm �FLISTDUMMY � always

mv �FLISTCAT �FLIST � always

fi � always

Figure 		� Example task script for a multi�tasking tool	 Part �



��

� tool is emacs

echo "����"�TYPE� CTRL�xf �CPath � tool�dependent � load code file

if � �� � �NotCompiled� � � tool�dependent

then � tool�dependent

echo "����"�TYPE� CTRL�x � � tool�dependent � display new buffer

echo "����"�TYPE� CTRL�xf �CompilePath

� tool�dependent � load analyzer logfile

fi � tool�dependent

if � �� � �NotAnalyzed� � � tool�dependent

then � tool�dependent

echo "����"�TYPE� CTRL�x � � tool�dependent � display new buffer

echo "����"�TYPE� CTRL�xf �APath

� tool�dependent � load compiler logfile

fi � tool�dependent

Figure 	�� Example task script for a multi�tasking tool	 Part �

as an example of the category of programs where such restrictions are inherent�
From our point of view� idraw presents some additional features of interest since it
ful�lls our de�nition of heavy�weight tool there is a relatively long initialization
time following its invocation ��

In our experiment� we employed a distinct task� parameterized by a �le attribute
from Oz�s objectbase� to construct a complete �gure or to allowing editing of an
existing �gure stored in that �le� with the details of the drawing left to the creativity
and expertise of the user� That is� a task�s envelope would send a message to be
displayed in the pop�up window� telling the user to load a �le with a particular
pathname� and brie�y instruct the user regarding the purpose of the drawing to
be constructed for that �le� The user was responsible for using idraw�s normal
command to later save that �le� prior to announcing the conclusion of the task�
This accounts for a simple interaction model that is common practice in the use of
such kind of tools� however� it would alternatively be plausible to invent tasks and
corresponding envelopes to operate at a much �ner level of granularity� for example�
�select the line icon and insert a vertical line two inches to the left of the triangle��
but we doubt this would be useful �except perhaps as part of a tutorial in the use
of a system devoted to the management of graphic documents��

The construction of the corresponding wrapper� and of wrappers for most UNI QUEUE

applications� is actually very simple the only tool�dependent statements are aimed
at instructing the user on how to load the input �le and �optionally� on what
he�she must do with it� The actual envelope is shown in Figure ��� note its simi�
lar structure to the task�speci�c envelope �for a UNI NO QUEUE tool� in Figures ��
and ���



��

���bin�ksh

�input parameters�

� �� tool dir� ������� MTP additional parameter

� �� file ������� NOTE� FILE parameter

� �� message ������� Literal

� �� rule identifier ������� MTP additional parameter

� �� client identifier������� MTP additional parameter

cp �� �� � copy all FILE parameters in the tool dir�

FileName��basename ��� � for all the FILE parameteres

FilePath��echo ����FileName� � for all the FILE parameteres

FLISTDUMMY����filelisttmp � always

FLIST����filetable � always

touch �FLISTDUMMY � always

echo �� �� �FileName �� �� �FLISTDUMMY

� for all the file parameters

FOUND��find �� �name filetable �print� � always

if � �x�FOUND� � �x� � � always

then � always

mv �FLISTDUMMY �FLIST � always

else � always

FLISTCAT����mergelist � always

cat �FLISTDUMMY �FLIST � �FLISTCAT � always

rm �FLISTDUMMY � always

mv �FLISTCAT �FLIST � always

fi � always

� tool is idraw

echo "����"�TYPE� CTRL�O � tool�dependent� accesses the loading cmd�

echo "����"�SELECT �FileName � tool�dependent � menu choice of file

echo "����"�CLICK on �Open� button � tool�dependent � performs load

� display to user the message attached to

� this instantiation of the task

if ��x��� �� �x�� � tool�dependent

then � tool�dependent

echo "����"��� � tool�dependent � displays task�specific message

fi � tool�dependent

Figure 	�� Task envelope for the idraw application



��

A few words are in order regarding our intentionally restrictive use of idraw we
had some trouble �nding a good candidate for the most basic UNI QUEUE category�
among the interactive tools we had on hand for testing �SEL seems adequate and
completely satisfactory for non�interactive tools� such as compilers� that must be
restarted for each new set of arguments anyway�� idraw on the other hand seemed
to have many of the properties that we were looking for in a UNI QUEUE candidate�
However� we recognize that it would normally be deemed UNI NO QUEUE� because of
its intrinsic multi�bu�ering capability �see Section 	���� Further� one could imagine
employing idraw in a multi�user context� where one user starts a picture and others
add to and �nish it� analogous to the work model in Section 	��� in which case
idraw could even be designated MULTI QUEUE�
Given all of the above� one may have the impression that perhaps the UNI QUEUE

category is not really necessary� However� we expect that environment builders will
discover cases where they intend a tool to be used in a certain restricted way within
the work�ow� and enforcement of UNI QUEUE would prove useful�
In general� UNI QUEUE appears suitable to deal with those applications that do

not present any multi�tasking capability and do not seem particularly adaptable to
multiple users� but are most conveniently handled as persistent tools� The main
advantages of persistence for this class of tools� and the most valuable improvements
introduced by MTP�s loose wrapping compared to tight wrapping as in SEL� is the
reduction of startup overhead �since the tool need be invoked only once� and the
user can run ordered sequences of tasks on the same instance of the programwithout
losing its internal state�

���� UNI NO QUEUE	 emacs

emacs ���
 is one of the most readily available and widely used text editors� its
sophisticated functionality and features make it a very useful tool� which nearly
reaches in itself the status of a single�user programming environment� All of its com�
mands are expressed with sequences of keystrokes� augmented with mouse pointing
and selection� its latest versions also support menu selection� at least for its main
features� One of the most useful properties of emacs� and one of the most impor�
tant for us with respect to this discussion� is its bu�ering capability� This enables
the user to operate simultaneously on multiple �les� keeping several bu�ers in the
background and switching among them on command� Coupled with the ability to
split the display and hence show more than one of the bu�ers� this feature is of
great use to perform complex and incremental editing sessions that involve as many
di�erent data sets as needed�
Many users would prefer to use emacs in the natural fashion available outside

a process�centered or otherwise task�oriented environment framework� which is to
create and kill bu�ers� load and save �les� and cut and paste among bu�ers��les�
as the urge arises during perhaps very long work sessions �� emacs demonstrates
the most obvious limitation of conventional Black Box wrappers� in which some
peculiarities of the application do not �t well with the protocol�s design and are



��

left unsupported� but it is nevertheless possible to integrate the program in some
form�

MTP�s UNI NO QUEUE class allows for overlapping multiple tasks that involve load�
ing various bu�ers of the same executing emacs instance with the desired �les for
the user�s editing sessions� MTP then employs watchers to allow mapping of each
modi�ed �le to the corresponding task and hence discriminates what �le attributes
must accordingly be modi�ed inside the environment at the end of the task� The
use of the pop�up window during the initialization and conclusion phases of each
task e�ectively isolates the overlapping tasks� in the sense that data �ow and status
are independent�

In our experiment� we employed individual tasks� parameterized by �le attributes�
to edit programming language or documentation �les� the details of the program�
ming or writing were the concern of the user� That is� a task�s envelope would
display a message on the pop�up window telling the user to load the �le with a
given pathname� and perhaps brie�y explain to the user the purpose of the code or
prose in that �le� Rather than simply asking the user to edit� the envelope might
request the user to repair the syntax errors found during the last compilation� by
sending a �le containing those error messages to another bu�er as part of the same
task� The complete script of an emacs wrapper of this kind is shown in Figures ��
and ��� it performs the loading of a C source �le together with the results of the
last analyzer �lint� and compiler runs� in case they had generated some error mes�
sages� Again� the user must give emacs�s normal command to save the source �le�
He�she may choose to indicate that the completion of the task has been successful�
by committing changes to the environment�s repository via the success button in
the pop�up window� or not to save his�her work� by selecting the failure button
�which has the e�ect of withdrawing whatever intermediate saves were performed
during the work and noticed by the watchers�� As with idraw� we did not consider
�ner�grained tasks such as �add a new �oating point variable to function f and
initialize it to pi�� but the implementation supports them�

A previous attempt to extend Black Box enveloping had focused on emacs as a
test case� and tried to resolve the problems posed by the desired incremental data
exchange with the environment� This previous attempt exploited a facility not
provided by most tools an extension language� emacs� extension language� called
E�Lisp� allows users to de�ne their own new functions and commands� and thus
customize emacs to their applications�

Ad hoc E�Lisp functions were coupled with an augmented version of SEL� to
e�ect a Grey Box integration� where the environment could perform loading of
additional �les into the same emacs instance at any time and discern which �les
had been updated� No special e�ort was required by the user� in contrast to the
attention he�she must pay to MTP�s pop�up window� This was achieved using one
wrapper for the entire session� which dealt with addition of new bu�ers as new
tasks were submitted� rather than using a separate wrapper per task� There was
a major drawback to this approach� however only one �nal status result could be
returned to the environment� when emacs and its wrapper terminated� and all �les



��

were e�ectively recorded into the environment�s repository at this same moment�
In other words� it was not possible to treat separately the di�erent sets of data
acquired throughout the work session � a central feature of MTP�
Later during the development of MTP� we looked at E�Lisp again to pursue Grey

Box integration� Ad hoc E�lisp functions implemented a direct interface between
Emacs and the watcher utility� and also completely automated the initialization
phase of the tasks� The conclusion phase� particularly the choice of the success or
failure return status for the separate tasks run on the same instance of emacs� is
still an explicit responsibility of the user even under this paradigm�
In general� UNI NO QUEUE appears appropriate for applications with some internal

multi�tasking� multi�bu�er or multi�context capability� but still not particularly
useful or desirable for multi�user access� The main advantage of persistence for this
class of tools is that the user can run partially ordered tasks on the same instance of
the program� again without losing its intermediate state information� and possibly
allowing for sharing or splicing of intermediate results among the tasks� Note there
is no explicit means for directing� from the environment� intentional cut and paste
or other sharing among tasks� the tool integrator can� however� prevent such cut
and paste by designating the tool as UNI QUEUE� Cut and paste can be directed
within a single task that simultaneously presents multiple �le arguments to the
tool� with the envelope�s messages to the pop�up window instructing the user what
to do�

���� MULTI QUEUE	 FUF

FUF is a sophisticated uni�cation�based tool running on top of Lisp and is used�
among other things� in the �eld of Natural Language Processing for the generation
of sentences from corresponding syntactic data structures ���
� It de�nes hierar�
chical procedures that apply in sequence one or more separate layers of uni�cation
rules to its input structures � as well as to the new structures produced by each
step of the procedure � in order to obtain as output all the valid surface forms�
under the constraints posed by the language rules� FUF is a typical Lisp�based
interpreted application� in that it that supports various kinds of interactive tracing
facilities and has the option to test and execute various data and program �les� by
loading and swapping them on the �y� As with most interpretive tools� it maintains
su�cient information in memory to re�ect the progress of its elaboration through
the series of commands issued to it since start�up� Moreover� like many query
systems constructed on top of Lisp� there is a long startup time and it engages a
considerable amount of system resources �notably main memory and swap space�
and thus quali�es as a heavy�weight tool�
One of the main reasons for this choice as our exemplar MULTI QUEUE tool is that

it is easy to imagine a scenario in which� in order to process some data with FUF �
multiple uni�cation procedures are needed� each of which is the responsibility of
a di�erent member of a development group� Our paradigm could facilitate the
testing and execution of the various phases of the project through a �modest� form



�


of groupware sequentially� each developer would load into FUF its own program�
run it on the appropriate data and re�ne it as much as needed� and produce at
the end an output that is also the input for the next step� also leaving the system
in the correct state to begin the following task� The �nal outcome of the overall
work�ow would be produced by a single instance of the system and as the result
of the collaboration of several users� Analogous collaborative work models could
be applied to other programs� which outside the MTP framework could not be
employed in this way�

The envelopes we devised for these kind of tasks are devoted to load within the
memory of FUF a speci�c uni�cation program� and to handle the correct system
con�guration for it� by asking the user to type the appropriate Lisp commands� The
user might know little� if anything� about the con�guration issues involved he�she
needs only to follow the instructions appearing in the pop�up window� since each
envelope is specialized towards a separate portion of the group work� After this
initial customization� the user is left completely free to query FUF and interact with
it in the typical fashion of Lisp�based interpretive applications� Any �les produced
as result of this operation may be imported into the objectbase via the success vs�
failure choice that ends the task� as already described above�

From a general point of view� the MULTI QUEUE category allows the reuse of single
instances of such computationally expensive programs throughout a series of tasks�
Another important point in favor of supporting this class is that the information
retained in the tool�s memory space �and not necessarily persistently on disk� rep�
resents both the current state of the system and the history of its past performance�
and is generally necessary for generating the answer to new queries� This makes
even more valuable the ability of the MULTI QUEUE work model to support appli�
cations with long�duration work sessions that go beyond any single task� and to
ensure common access to them to any set of clients�

The most relevant consequence of the creation of this category is indeed that� by
exploiting Activity Queues and the xmove facility that achieves passing of control
over the user interface among users involved in a session� it allows us not only
to conveniently integrate a vast and peculiar family of tools� but also to actually
modify at the same time their intrinsic single�user nature and extend their use
along the lines described above� We consider this as one of the most interesting
and meaningful results of this work�

xtv ��
 provides a related facility� also in a Black Box fashion� but at a �ner
level of granularity and without any particular consideration for work�ow� xtv

simultaneously displays the X user interface of a more�or�less arbitrary X Windows
tool to multiple users� and provides its own �oor�passing scheme with respect to
which one user has control of the mouse and keyboard at any given moment� If
we were to employ xtv instead of xmove� then most of our MULTI QUEUE tools could
nominally become MULTI NO QUEUE as far as MTP were concerned� but still lacking
facilities for truly concurrent work�



�	

���� MULTI NO QUEUE	 Marvel

We decided to use as a testbench for this category Marvel ���
� ��
� the predeces�
sor of Oz� which is also a multi�user process�centered environment� but with the
di�erence � not relevant to this paper � of supporting only one process at a time�
i�e�� of being centralized� with no notion of inter�process interoperability� The main
reasons for this choice were the familiarity we have with Marvel as a complete
multi�user system� the in�house availability of the application in a ready�to�run
state� and its stability compared to using Oz itself as the �tool��

Marvel� as a typical client�server system �and unlike most applications based on
peer�to�peer architectures�� poses� in the most general case� the problem of treating
di�erently the OPEN�TOOL command initiating a session� when it is necessary to
start�up both the tool�s server and a client� from those subsequently issued to join
the session� which obtain further copies of only the Marvel client� Conversely�
the last CLOSE�TOOL command in a session must deal with shutting down the tool�s
server� Moreover� since one can optionally employ a daemon that automatically
starts up the Marvel server with the �rst client and automatically shuts it down
when the last client exits�Marvel can also be used to simulate the behavior of non�
hierarchical architectures� which do not need special treatment for the activation
of its �rst and last components�

The intrinsic di�culties of dealing with these issues were solved in the context
of the envelope indicated by the path �eld of the tool declaration and invoked by
the OPEN�TOOL command� Marvel�s initialization envelope is shown in Figures �
and ��� The shut�down of Marvel�s server was also handled by this envelope�
but MTP could easily be extended to handle a separate envelope triggered by the
CLOSE�TOOL command� MTP� with its MULTI NO QUEUE class� is therefore able to
support a generic multi�user tool� by forking and providing copies of the program
to every participant in a session� as required by its structure�

During our experiment with Marvel� we devised tasks that perform operations
within an in�progress work�ow �as with Oz� the product data and process state is
persistent across sessions as well as tasks within a session�� The wrappers instruct
the user� with the usual pop�up messages� on how to use Marvel�s GUI to browse
the objectbase� inspect the process de�nition task set� etc� It is also quite simple to
ask users to initiate speci�c Marveltasks �represented as rules� on certain objects�
a template for such scripts is shown in Figure ���

This raises the possibility of an Oz meta�process that controls one �or more�
Marvel process�es�� e�ecting a form of hierarchical work�ow system� This could
potentially address a certain limitation in Marvel� shared by Oz� that relation�
ships among tasks within a process are formed only with respect to satisfying local
constraints� and there is no global topology or grand view ���
� However� that
grand view could feasibly be de�ned by the meta�process� by directing the work�
�ow among the entry points of aggregate tasks� while the process itself directs only
the work�ow among primitive tasks� Further discussion of this idea is outside the
scope of this paper�



��

���bin�ksh

�input parameters�

� �� tool dir� ������� MTP additional parameter

� �� rule name ������� Literal

� �� object id�s
� ������� Literal

� �� rule identifier ������� MTP additional parameter

� �� client identifier������� MTP additional parameter

� no file involved

FLISTDUMMY����filelisttmp � always

FLIST����filetable � always

touch �FLISTDUMMY � always

FOUND��find �� �name filetable �print� � always

if � �x�FOUND� � �x� � � always

then � always

mv �FLISTDUMMY �FLIST � always

else � always

FLISTCAT����mergelist � always

cat �FLISTDUMMY �FLIST � �FLISTCAT � always

rm �FLISTDUMMY � always

mv �FLISTCAT �FLIST � always

fi � always

� tool is Marvel

echo "����"�SELECT �� rule within Rules menu

� tool�dependent � choose rule

echo "����"�TYPE� �� �as parameter for ��


� tool�dependent � rule parameter�s


echo "����"�TYPE� return � tool�dependent � fire rule

Figure 	�� Task envelope for the Marvel application



��

In general� there are some important di�erences between the integrations of col�
laborative and non�collaborative tools� which must be taken into account when con�
sidering the capabilities of MULTI NO QUEUE integration� In the non�collaborative
case� in which each user works in isolation from the rest �a multi�user database
management system is a typical example� the di�erent requests are handled by
the intrinsic multi�tasking capability of the tool and con�icts among overlapping
argument sets are sporadic and resolved either before the arguments are passed to
the tool by a conventional concurrency control mechanism provided by the environ�
ment �Oz� by default� implements atomicity and serializability among individual
or multi�step tasks delimited as transactions ���
�� in the case of data from the
environment�s repository� or by the tool�s own policies� in the case of an external
repository speci�c to the tool �e�g�� the database volume in the case of a database
management system��
In the collaborative case� instead� even though most of the multi�user machinery

is necessarily o�ered by the wrapped tool itself� the problem of shared use of data
becomes more problematic� A simple example is that of a multi�user editor ���
�
employed in the context of a groupware task the program itself permits and is able
to deal with concurrent modi�cation of its internal data� but from the viewpoint of
environment�s data repository it is necessary to support a concurrency control policy
that allows multiple writers of the object containing the edited �le �this is achieved
in Oz by de�ning and loading application�speci�c concurrency control policies�
written in a notation ���
 that permits de�nition of �cooperative transactions� ���
��
Concurrency control� per se� is not in the strictest sense a part of the wrapping
facility� but is nevertheless essential in order to fully integrate this class of tools�


� Contributions and Future Work

We have fully implemented all the facilities discussed in this paper� except as noted
in the text� and support the tools we chose as test cases for MTP�s four work mod�
els� Future experiments should encompass more exacting tools� Nevertheless� the
completed experiments � all of which run quite satisfactorily � have demonstrated
the feasibility of employing wrappers for persistent tools within a process�centered
environment framework�
Further� we have introduced several useful concepts for the domain of Black Box

tool integration� including a categorization of tools into families with diverse multi�
user and multi�tasking capabilities� the notions of multiple complementary envelop�
ing protocols and of loose wrapping� the idea of interfacing with already�executing
persistent instances of external programs� and the ability to extend the functionality
of intrinsically single�user tools to partial sharing of their data and computational
resources� The support for directing tool execution to a proxy client� when the
host or architecture �eld is non�empty� has recently been extended to SEL� since
the problems of host licenses and architecture and operating system dependencies
apply even to the rather mundane tools �compilers and the like� that are supported
by previous approaches to Black Box enveloping�



��

The MULTI NO QUEUE model presented here is best suited to asynchronous group�
ware applications� where users enter and leave the tool as they please� There is
as yet no notation in Oz�s process modeling language to de�ne the circumstances
under which tool sessions should be automatically opened�joined and closed�left�
which would still allow for asynchronous groupware but more closely integrate ses�
sions into the work�ow in a similar manner to how individual tasks within those
sessions are supported� In�progress work also includes process modeling and exe�
cution support for synchronous groupware in which multiple users perform a task
together at the same time ��
� For example� the multi�flag �eld� originally intro�
duced for MTP� is now used within SEL to identify tools that support this kind
of collaboration� so that the system can simultaneously submit the task and its
arguments to the clients corresponding to multiple designated users �	
�

We are also working on extending the MTP approach to exploit Oz�s multi�site�
multi�server� multi�process orientation� The implementation described here oper�
ates only within a single site� server� and process �i�e�� a shared network �le system
is assumed and authorization issues are not addressed�� We are working on tool
modeling and infrastructure support to redirect execution to proxy clients attached
to a remote server �potentially located at another Internet site�� in cases where
tools are available only in the remote environment �e�g�� due to proprietary or
licensing issues� or the need for a special�purpose machine�� We have already devel�
oped process modeling notation to direct control over pending tasks to alternative
users ��	
� which would be needed when it is inappropriate or technically infeasible
for a remote user to receive the tool�s GUI�

Another interesting direction� now in the planning stage� is to split o� all tool
management �for both MTP and SEL� from the Oz server into a separate com�
ponent� to be called Rivendell� that would execute as another operating system
process distinct from the server� user clients and proxy clients� This would lower
the load on the server� simplify later replacement of the component within the Oz
system �if desired�� and ease the incorporation of both MTP and SEL facilities into
other systems�

Acknowledgments

Prof� Kathy Mckeown provided the FUF application and served as the second
reader for Mr� Valetto�s Masters thesis ���
� Peter Skopp played a major part in
designing and implementing the architectural changes needed to introduce proxy
clients into Oz� a variant of which are used on a one�to�one basis to support low�
bandwidth �modem� user clients ���
� George Heineman conducted the SEL Grey
Box experiment involving overlapping tasks submitted to emacs� and developed
the watcher utility as part of that e�ort� Richard Baldwin is working with Prof�
Kaiser on SEL proxy clients and the other new ideas outlined above� except for the
synchronous groupware facilities � which were developed by Issy Ben�Shaul�



��

Notes

�� The �rst use of the term �envelope� in this sense	 that we know of	 was with respect to the
Istar system �����

�� SEL and many of the other Oz facilities mentioned in this paper were originally developed for
an earlier system called Marvel�

�� Proxy clients and user clients were initially referred to as Special Purpose Clients and General
Purpose Clients	 respectively �����

�� About �� elapsed seconds on a Sun SparcStation �� workstation�

�� The second author has been known to keep the same emacs instance running for months�

References

�� Hussein M� Abdel�Wahab� XTV� http���www�cs�odu�edu� waha cit�XTV�doc�xtv�html�
�� Transcending Boundaries� ACM 	� Conference on Computer Supported Cooperative

Work	 Chapel Hill NC	 October ����� ACM Press�
�� Naser S� Barghouti� Supporting cooperation in the marvel process�centeredSDE� In Herbert
Weber	 editor	 �th ACM SIGSOFT Symposium on Software Development Environments	
pages �����	 Tyson�s Corner VA	 December ����� Special issue of Software Engineering
Notes	 ��
��	 December �����

�� Israel Z� Ben�Shaul� An object management system for multi�user programming environ�
ments� Master�s thesis	 Columbia University	 Department of Computer Science	 April �����
CUCS��������

�� Israel Z� Ben�Shaul� A Paradigm for Decentralized Process Modeling and its Realization in
the oz Environment� PhD thesis	 Columbia University	 Department of Computer Science	
April ����� CUCS��������

�� Israel Z� Ben�Shaul	 George T� Heineman	 Steve S� Popovich	 Peter D� Skopp	 Andrew Z�
Tong	 and Giuseppe Valetto� Integrating groupware and process technologies in the oz
environment� In Carlo Ghezzi	 editor	 th International Software Process Workshop� The
Role of Humans in the Process	 pages �������	 Airlie VA	 October ����� IEEE Computer
Society Press�

�� Israel Z� Ben�Shaul and Gail E� Kaiser� A paradigm for decentralized process modeling
and its realization in the oz environment� In 	�th International Conference on Software
Engineering	 pages �������	 Sorrento	 Italy	 May ����� IEEE Computer Society Press�

�� Israel Z� Ben�Shaul	 Gail E� Kaiser	 and George T� Heineman� An architecture for multi�
user software development environments� Computing Systems� The Journal of the USENIX
Association	 �
���������	 Spring �����

�� Melissa Chase and Howard Reubenstein� An assessment of KBSA and a look towards the
future� Technical Report RL�TR�������	 Rome Laboratory	 June �����

��� Prasun Dewan	 editor� Special Issue on Collaborative Software	 volume ��� of Computing
Systems� The Journal of the USENIX Association� University of California Press	 Spring
�����

��� Mark Dowson� Integrated project support with IStar� IEEE Software	 �
�������	 November
�����

��� Michael Elhadad� Using argumentation to control lexical choice� a uni�cation�based imple�
mentation� PhD thesis	 Columbia University	 Department of Computer Science	 �����

��� Christer Fernstr�om� PROCESS WEAVER� Adding process support to UNIX� In �nd Inter�
national Conference on the Software Process� Continuous Software Process Improvement	
pages �����	 Berlin	 Germany	 February ����� IEEE Computer Society Press�

��� David Garlan and Ehsan Ilias� Low�cost	 adaptable tool integration policies for integrated
environments� In Richard N� Taylor	 editor	 �th ACM SIGSOFT Symposium on Software
Development Environments	 pages ����	 Irvine CA	 December ����� Special issue of Software
Engineering Notes	 ��
��	 December �����



��

��� Mark A� Gisi and Gail E� Kaiser� Extending a tool integration language� In Mark Dow�
son	 editor	 	st International Conference on the Software Process� Manufacturing Complex
Systems	 pages �������	 Redondo Beach CA	 October ����� IEEE Computer Society Press�

��� George T� Heineman� Process modeling with cooperative agents� In Brian Warboys	 edi�
tor	 �rd European Workshop on Software Process Technology	 volume ��� of Lecture Notes
in Computer Science	 pages �����	 Villard de Lans 
Grenoble�	 France	 February �����
Springer�Verlag�

��� George T� Heineman and Gail E� Kaiser� An architecture for integrating concurrency control
into environment frameworks� In 	
th International Conference on Software Engineering	
pages �������	 Seattle WA	 April ����� ACM Press�

��� George T� Heineman	 Gail E� Kaiser	 Naser S� Barghouti	 and Israel Z� Ben�Shaul� Rule
chaining in marvel� Dynamic binding of parameters� IEEE Expert	 �
��������	 December
�����

��� Gail E� Kaiser� Cooperative transactions for multi�user environments� In Won Kim	 editor	
Modern Database Systems� The Object Model� Interoperability� and Beyond	 chapter ��	
pages �������� ACM Press	 New York NY	 �����

��� Gail E� Kaiser	 Steven S� Popovich	 and Israel Z� Ben�Shaul� A bi�level language for software
process modeling� In Walter F� Tichy	 editor	 Con�guration Management	 number � in
Trends in Software	 chapter �	 pages ������ John Wiley � Sons	 �����

��� Simon Kaplan	 editor� Conference on Organizational Computing Systems	 Milpitas CA	
November ����� ACM Press�

��� SimonM� Kaplan	William J� Tolone	 Alan M� Carroll	 Douglas P� Bogia	 and Celsina Bignoli�
Supporting collaborative software developmentwith ConversationBuilder� In Herbert Weber	
editor	 �th ACM SIGSOFT Symposium on Software Development Environments	 pages ���
��	 Tyson�s Corner VA	 December ����� Special issue of Software Engineering Notes	 ��
��	
December �����

��� Balachander Krishnamurthy and Naser S� Barghouti� Provence� A process visualization
and enactment environment� In Ian Sommerville and Manfred Paul	 editors	 �th European
Software Engineering Conference	 number ��� in Lecture Notes in Computer Science	 pages
�������� Springer�Verlag	 Garmisch�Partenkirchen	 Germany	 September �����

��� John R� Nicol	 C� ThomasWilkes	 and Frank A� Manola� Object orientation in heterogeneous
distributed computing systems� Computer	 ��
��������	 June �����

��� Reference Model for Frameworks of Software Engineering Environments� Edition � of Tech�
nical Report ECMA TR���	 August ����� NIST Special Publication �������� Available as
�pub�isee�sp���������ps via anonymous ftp from nemo�ncsl�nist�gov�

��� David Notkin and William G� Griswold� Extension and software development� In 	�th
International Conference on Software Engineering	 pages �������	 Ra es City	 Singapore	
April �����

��� Steven S� Popovich� Rule�based process servers for software development environments� In
John Botsford	 Arthur Ryman	 Jacob Slonim	 and David Taylor	 editors	 	� Centre for
Advanced Studies Conference �CASCON�	 volume I	 pages �������	 Toronto ON	 Canada	
November ����� IBM Canada Ltd� Laboratory�

��� James M� Purtilo� The POLYLITH software bus� ACM Transactions on Programming
Languages and Systems	 ��
����������	 January �����

��� Steven P� Reiss� Connecting tools using message passing in the Field environment� IEEE
Software	 �
��������	 July �����

��� David S� Rosenblumand BalachanderKrishnamurthy� An event�basedmodel of software con�
�guration management� In Peter H� Feiler	 editor	 �rd International Workshop on Software
Con�guration Management	 pages ������ ACM Press	 June �����

��� Peter D� Skopp� Process centered software development on mobile hosts� Technical Report
CUCS�������	 Columbia University Department of Computer Science	 October ����� MS
Thesis Proposal�

��� E� Solomita	 J� Kempf	 and D� Duchamp� Xmove� A pseudoserver for X window movement�
The X Resource	 �
�����������	 July �����



��

��� Richard M� Stallman� Emacs the extensible	 customizable	 self�documenting display editor�
In SIGPLAN SIGOA Symposium on Text Manipulation	 pages �������� ACM	 June �����
Special issue of SIGPLAN Notices	 ��
��	 June �����

��� Ian Thomas� PCTE interfaces� Supporting tools in software�engineering environments� IEEE
Software	 �
��������	 November �����

��� Andrew Z� Tong	 Gail E� Kaiser	 and Steven S� Popovich� A exible rule�chaining engine for
process�based software engineering� In th Knowledge�Based Software Engineering Confer�
ence	 pages �����	 Monterey CA	 September ����� IEEE Computer Society Press�

��� GiuseppeValetto� Expanding the repertoire of process�basedtool integration�Master�s thesis	
Columbia University	 Department of Computer Science	 December ����� CUCS��������

��� Giuseppe Valetto and Gail E� Kaiser� Enveloping sophisticated tools into computer�aided
software engineeringenvironments� In IEEE 
th International Workshop on Computer�Aided
Software Engineering	 pages �����	 Toronto Ontario	 Canada	 July �����

��� John M� Vlissides and Mark A� Linton� Unidraw� A framework for building domain�speci�c
graphical editors� ACM Transactions on Information Systems	 �
����������	 July �����


