196 research outputs found

    Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression

    Get PDF
    Background: The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p> Methodology/Principal Findings: Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p> Conclusion/Significance: IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p&gt

    Exposure to Candida albicans Polarizes a T-Cell Driven Arthritis Model towards Th17 Responses, Resulting in a More Destructive Arthritis

    Get PDF
    BACKGROUND: Fungal components have been shown very effective in generating Th17 responses. We investigated whether exposure to a minute amount of C. albicans in the arthritic joint altered the local cytokine environment, leading to enhanced Th17 expansion and resulting in a more destructive arthritis. METHODOLOGY: Chronic SCW arthritis was induced by repeated injection with Streptococcus pyogenes (SCW) cell wall fragments into the knee joint of C57Bl/6 mice, alone or in combination with the yeast of C. albicans or Zymosan A. During the chronic phase of the arthritis, the cytokine levels, mRNA expression and histopathological analysis of the joints were performed. To investigate the phenotype of the IL-17 producing T-cells, synovial cells were isolated and analyzed by flowcytometry. PRINCIPAL FINDINGS: Intra-articular injection of either Zymosan A or C. albicans on top of the SCW injection both resulted in enhanced joint swelling and inflammation compared to the normal SCW group. However, only the addition of C. albicans during SCW arthritis resulted in severe chondrocyte death and enhanced destruction of cartilage and bone. Additionally, exposure to C. albicans led to increased IL-17 in the arthritic joint, which was accompanied by an increased synovial mRNA expression of T-bet and RORgammaT. Moreover, the C. albicans-injected mice had significantly more Th17 cells in the synovium, of which a large population also produced IFN-gamma. CONCLUSION: This study clearly shows that minute amounts of fungal components, like C. albicans, are very potent in interfering with the local cytokine environment in an arthritic joint, thereby polarizing arthritis towards a more destructive phenotype

    Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko

    Get PDF
    International audienceThe data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-ÎČ plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pickup farther away from the comet

    The simulation of transport processes in cementitious materials with embedded healing systems

    Get PDF
    A new model for simulating the transport of healing agents in self-healing (SH) cementitious materials is presented. The model is applicable to autonomic SH material systems in which embedded channels, or vascular networks, are used to supply healing agents to damaged zones. The essential numerical components of the model are a crack flow model, based on the Navier-Stokes equations, which is coupled to the mass balance equation for simulating unsaturated matrix flow. The driving forces for the crack flow are the capillary meniscus force and the force derived from an external (or internal) pressure applied to the liquid healing agent. The crack flow model component applies to non-uniform cracks and allows for the dynamic variation of the meniscus contact angle, as well as accounting for inertial terms. Particular attention is paid to the effects of curing on the flow characteristics. In this regard, a kinetic reaction model is presented for simulating the curing of the healing agent and a set of relationships established for representing the variation of rheological properties with the degree of cure. Data obtained in a linked experimental programme of work is employed to justify the choice and form of the constitutive relationships, as well as to calibrate the model’s evolution functions. Finally, a series of validation examples are presented that include the analysis of a series of concrete beam specimens with an embedded vascular network. These examples demonstrate the ability of the model to capture the transport behaviour of this type of SH cementitious material system

    Linking Power Doppler Ultrasound to the Presence of Th17 Cells in the Rheumatoid Arthritis Joint

    Get PDF
    Power Doppler ultrasound (PDUS) is increasingly used to assess synovitis in Rheumatoid Arthritis (RA). Prior studies have shown correlations between PDUS scores and vessel counts, but relationships with T cell immunopathology have not been described.PBMC were isolated from healthy controls (HC) or RA patients and stimulated ex vivo with PMA and ionomycin for 3 hours in the presence of Golgistop. Paired synovial fluid (SF) or synovial tissue (ST) were analysed where available. Intracellular expression of IL-17, IFNgamma, and TNFalpha by CD4+ T cells was determined by flow cytometry. Synovial blood flow was evaluated by PDUS signal at the knees, wrists and metacarpophalangeal joints of RA patients. Serum, SF and fibroblast culture supernatant levels of vascular endothelial growth factor-A (VEGF-A) were measured by ELISA. The frequency of IL17+IFNgamma-CD4+ T cells (Th17 cells) was significantly elevated in peripheral blood (PB) from RA patients vs. HC (median (IQR) 0.5 (0.28-1.59)% vs. 0.32 (0.21-0.54)%, p = 0.005). Th17 cells were further enriched (mean 6.6-fold increase) in RA SF relative to RA PB. Patients with active disease had a higher percentage of IL-17+ T cells in ST than patients in remission, suggesting a possible role for Th17 cells in active synovitis in RA. Indeed, the percentage of Th17 cells, but not Th1, in SF positively correlated with CRP (r = 0.51, p = 0.04) and local PDUS-defined synovitis (r = 0.61, p = 0.002). Furthermore, patients with high levels of IL-17+CD4+ T cells in SF had increased levels of the angiogenic factor VEGF-A in SF. Finally, IL-17, but not IFNgamma, increased VEGF-A production by RA synovial fibroblasts in vitro.Our data demonstrate a link between the presence of pro-inflammatory Th17 cells in SF and local PDUS scores, and offer a novel immunological explanation for the observation that rapid joint damage progression occurs in patients with persistent positive PDUS signal

    Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years

    Get PDF
    Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns

    Additive growth inhibitory effects of ibandronate and antiestrogens in estrogen receptor-positive breast cancer cell lines

    Get PDF
    INTRODUCTION: Bisphosphonates are inhibitors of osteoclast-mediated tumor-stimulated osteolysis, and they have become standard therapy for the management of bone metastases from breast cancer. These drugs can also directly induce growth inhibition and apoptosis of osteotropic cancer cells, including estrogen receptor-positive (ER+) breast cancer cells. METHODS: We examined the anti-proliferative properties of ibandronate on two ER+ breast cancer cell lines (MCF-7 and IBEP-2), and on one ER negative (ER-) cell line (MDA-MB-231). Experiments were performed in steroid-free medium to assess ER regulation and the effect of ibandronate in combination with estrogen or antiestrogens. RESULTS: Ibandronate inhibited cancer cell growth in a dose- and time-dependent manner (approximate IC(50): 10(-4 )M for MCF-7 and IBEP-2 cells; 3 × 10(-4 )M for MDA-MB-231 cells), partly through apoptosis induction. It completely abolished the mitogenic effect induced by 17ÎČ-estradiol in ER+ breast cancer cells, but affected neither ER regulation nor estrogen-induced progesterone receptor expression, as documented in MCF-7 cells. Moreover, ibandronate enhanced the growth inhibitory action of partial (4-hydroxytamoxifen) and pure (ICI 182,780, now called fluvestrant or Faslodexℱ) antiestrogens in estrogen-sensitive breast cancer cells. Combination analysis identified additive interactions between ibandronate and ER antagonists. CONCLUSION: These data constitute the first in vitro evidence for additive effects between ibandronate and antiestrogens, supporting their combined use for the treatment of bone metastases from breast cancer
    • 

    corecore