389 research outputs found
Inflammatory, Hemostatic, and Other Novel Biomarkers for Diabetic Retinopathy: The Multi-Ethnic Study of Atherosclerosis
Objective— There are conflicting data regarding relationships of systemic biomarkers of inflammation, hemostasis, and homocysteine with diabetic retinopathy. We examined these relationships in the Multi-Ethnic Study of Atherosclerosis. Research design and methods— A total of 921 participants with diabetes were included. Diabetic retinopathy was graded from retinal photographs. We defined two outcomes: any diabetic retinopathy and vision-threatening diabetic retinopathy (severe nonproliferative diabetic retinopathy or worse). Systemic markers analyzed were C-reactive protein, homocysteine, fibrinogen, plasmin- 2-antiplasmin complex (PAP), interleukin-6, D-dimer, factor VIII, serum creatinine, and urinary albumin-to-creatinine (UAC) ratio. Results— Prevalence of diabetic retinopathy was 33.2% and vision-threatening diabetic retinopathy 7.1%. After adjusting for established risk factors (diabetes duration, A1C, systolic blood pressure, waist-to-hip ratio, and use of diabetes medications), fibrinogen (odds ratio 1.14 [95% CI 1.01–1.32], P 0.05) and PAP (1.25 [1.05–1.50], P0.01) were associated with any diabetic retinopathy, while PAP (1.54 [1.13–2.11], P 0.007) and homocysteine (1.57 [1.16– 2.11], P 0.003) were associated with vision-threatening diabetic retinopathy. Only PAP remained significant after additional adjustment for serum creatinine and UAC ratio. Area under receiver-operator characteristic curve (AUROC) for diabetic retinopathy was constructed for established and novel risk factors. Established risk factors accounted for a 39.2% increase of the AUROC, whereas novel markers (fibrinogen, PAP, homocysteine, serum creatinine, and UAC ratio) only accounted for an additional 2.2%. Conclusions— There were few associations of novel markers of inflammation, hemostasis, and homocysteine with diabetic retinopathy after controlling for established risk factors. These data suggest that there is limited clinical use of these biomarkers for prediction of diabetic retinopathy
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV
The DELPHI detector at LEP has collected 54 pb^{-1} of data at a
centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV
during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data
were used to measure the average charged particle multiplicity in e+e- -> b
bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the
multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183
GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85
(stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01
(syst). This result is consistent with QCD predictions, while it is
inconsistent with calculations assuming that the multiplicity accompanying the
decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure
KidneyNetwork: using kidney-derived gene expression data to predict and prioritize novel genes involved in kidney disease
Genetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the disorder as potentially pathogenic variants can reside in genes that are not yet known to be involved in kidney disease. We have developed KidneyNetwork, that utilizes tissue-specific expression to inform candidate gene prioritization specifically for kidney diseases. KidneyNetwork is a novel method constructed by integrating a kidney RNA-sequencing co-expression network of 878 samples with a multi-tissue network of 31,499 samples. It uses expression patterns and established gene-phenotype associations to predict which genes could be related to what (disease) phenotypes in an unbiased manner. We applied KidneyNetwork to rare variants in exome sequencing data from 13 kidney disease patients without a genetic diagnosis to prioritize candidate genes. KidneyNetwork can accurately predict kidney-specific gene functions and (kidney disease) phenotypes for disease-associated genes. The intersection of prioritized genes with genes carrying rare variants in a patient with kidney and liver cysts identified ALG6 as plausible candidate gene. We strengthen this plausibility by identifying ALG6 variants in several cystic kidney and liver disease cases without alternative genetic explanation. We present KidneyNetwork, a publicly available kidney-specific co-expression network with optimized gene-phenotype predictions for kidney disease phenotypes. We designed an easy-to-use online interface that allows clinicians and researchers to use gene expression and co-regulation data and gene-phenotype connections to accelerate advances in hereditary kidney disease diagnosis and research.Translational statementGenetic testing in patients with suspected hereditary kidney disease may not reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes not yet known to be involved in kidney disease, making it difficult to interpret the relevance of these variants. This reveals a clear need for methods to predict the phenotypic consequences of genetic variation in an unbiased manner. Here we describe KidneyNetwork, a tool that utilizes tissue-specific expression to predict kidney-specific gene functions. Applying KidneyNetwork to a group of undiagnosed cases identified ALG6 as a candidate gene in cystic kidney and liver disease. In summary, KidneyNetwork can aid the interpretation of genetic variants and can therefore be of value in translational nephrogenetics and help improve the diagnostic yield in kidney disease patients.Genetics of disease, diagnosis and treatmen
HCC recurrence in HCV-infected patients after liver transplantation: SiLVER Study reveals benefits of sirolimus in combination with CNIs - a post-hoc analysis
Factors affecting outcomes in liver transplant (LTx) recipients with hepatocellular carcinoma (HCC) and hepatitis C viral (HCV) infection include the choice of immunosuppression. Here, we analyzed the HCV+ subgroup of patients from the randomized controlled, international SiLVER Study. We performed a post hoc analysis of 166 HCV+ SiLVER Study patients regarding HCC outcome after LTx. Control patients (group A: n = 88) received mTOR inhibitor (mTORi)-free, calcineurin inhibitor (CNI)-based versus sirolimus-based immunosuppression (group B: n = 78). We found no significant difference regarding HCV-RNA titers between group A and B. Since no effect in group B could be due to variable sirolimus dosing, we split group B into patients receiving sirolimus-based immunosuppression + CNIs for >50% (B1; n = 44) or <50% (B2; n = 34) of the time. While there remained no difference in HCV-RNA titer between groups, HCC recurrence-free survival in group B1 (81.8%) was markedly better versus both group A (62.7%; P = 0.0136) and group B2 (64.7%; P = 0.0326); Interestingly, further subgroup analysis revealed an increase (P = 0.0012) in liver enzyme values in group B2. Taken together, in HCV-infected patients with HCC and LTx, mTORi immunosuppression + CNIs yields excellent outcomes. Unexpectedly, higher levels of liver inflammation and poorer outcomes occur with mTORi monotherapy in the HCV+ subgroup
Updated precision measurement of the average lifetime of B hadrons
The measurement of the average lifetime of B hadrons using inclusively reconstructed secondary vertices has been updated using both an improved processing of previous data and additional statistics from new data. This has reduced the statistical and systematic uncertainties and gives \tau_{\mathrm{B}} = 1.582 \pm 0.011\ \mathrm{(stat.)} \pm 0.027\ \mathrm{(syst.)}\ \mathrm{ps.} Combining this result with the previous result based on charged particle impact parameter distributions yields \tau_{\mathrm{B}} = 1.575 \pm 0.010\ \mathrm{(stat.)} \pm 0.026\ \mathrm{(syst.)}\ \mathrm{ps.
Limits on the production of scalar leptoquarks from Z (0) decays at LEP
A search has been made for pairs and for single production of scalar leptoquarks of the first and second generations using a data sample of 392000 Z0 decays from the DELPHI detector at LEP 1. No signal was found and limits on the leptoquark mass, production cross section and branching ratio were set. A mass limit at 95% confidence level of 45.5 GeV/c2 was obtained for leptoquark pair production. The search for the production of a single leptoquark probed the mass region above this limit and its results exclude first and second generation leptoquarks D0 with masses below 65 GeV/c2 and 73 GeV/c2 respectively, at 95% confidence level, assuming that the D0lq Yukawa coupling alpha(lambda) is equal to the electromagnetic one. An upper limit is also given on the coupling alpha(lambda) as a function of the leptoquark mass m(D0)
Track D Social Science, Human Rights and Political Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
- âŚ