184 research outputs found

    An exact Riemann solver based solution for regular shock refraction

    Full text link
    We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts and in the hydrodynamical case 3 signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin-Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer-Meshkov instability. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how addition of a perpendicular magnetic field increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave pattern transitions, in agreement with experiments, von Neumann shock refraction theory, and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the Richtmyer-Meshkov instability.Comment: 21 pages, 17 figures in 41 ps-files, accepted by J. Fluid Mec

    Selective inhibition of anti-MAG IgM autoantibody binding to myelin by an antigen-specific glycopolymer.

    Get PDF
    Anti-myelin-associated glycoprotein (MAG) neuropathy is a disabling autoimmune peripheral neuropathy that is caused by circulating monoclonal IgM autoantibodies directed against the human natural killer-1 (HNK-1) epitope. This carbohydrate epitope is highly expressed on adhesion molecules such as MAG, a glycoprotein present in myelinated nerves. We previously showed the therapeutic potential of the glycopolymer poly(phenyl disodium 3-O-sulfo-β-d-glucopyranuronate)-(1→3)-β-d-galactopyranoside (PPSGG) in selectively neutralizing anti-MAG IgM antibodies in an immunological mouse model and ex vivo with sera from anti-MAG neuropathy patients. PPSGG is composed of a biodegradable backbone that multivalently presents a mimetic of the HNK-1 epitope. In this study, we further explored the pharmacodynamic properties of the glycopolymer and its ability to inhibit the binding of anti-MAG IgM to peripheral nerves. The polymer selectively bound anti-MAG IgM autoantibodies and prevented the binding of patients' anti-MAG IgM antibodies to myelin of non-human primate sciatic nerves. Upon PPSGG treatment, neither activation nor inhibition of human and murine peripheral blood mononuclear cells nor alteration of systemic inflammatory markers was observed in mice or ex vivo in human peripheral blood mononuclear cells. Intravenous injections of PPSGG to mice immunized against the HNK-1 epitope removed anti-MAG IgM antibodies within less than 1 hr, indicating a fast and efficient mechanism of action as compared to a B-cell depletion with anti-CD20. In conclusion, these observations corroborate the therapeutic potential of PPSGG for an antigen-specific treatment of anti-MAG neuropathy. Read the Editorial Highlight for this article on page 465

    Patient-specific Bacteroides genome variants in pouchitis

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mBio 7 (2016): e01713-16, doi:10.1128/mBio.01713-16.A 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Each patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch.Leona M. and Harry B. Helmsley Charitable Trust; Bay and Paul Foundations; Frank R. Lillie Research Innovation Award; Gastrointestinal Research Foundation of Chicag

    Phytoplankton-Bacterial Interactions Mediate Micronutrient Colimitation at the Coastal Antarctic Sea Ice Edge

    Get PDF
    Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton–bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton–bacterial interactions in both positive and negative feedback loops

    Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean

    Get PDF
    海洋ウイルスの種組成と炭素の鉛直輸送の相関を確認 --ウイルスによる地球環境の制御を示唆. 京都大学プレスリリース. 2021-01-15.The biological carbon pump, in which carbon fixed by photosynthesis is exported to the deep ocean through sinking, is a major process in Earth's carbon cycle. The proportion of primary production that is exported is termed the carbon export efficiency (CEE). Based on in-lab or regional scale observations, viruses were previously suggested to affect the CEE (i.e., viral “shunt” and “shuttle”). In this study, we tested associations between viral community composition and CEE measured at a global scale. A regression model based on relative abundance of viral marker genes explained 67% of the variation in CEE. Viruses with high importance in the model were predicted to infect ecologically important hosts. These results are consistent with the view that the viral shunt and shuttle functions at a large scale and further imply that viruses likely act in this process in a way dependent on their hosts and ecosystem dynamics

    Blueberry Progress Reports

    Get PDF
    The 1979 edition of the Blueberry Progress Reports was prepared for the Maine Blueberry Commission and the University of Maine Blueberry Advisory Committee by researchers with the Maine Life Sciences and Agriculture Experiment Station and Maine Cooperative Extension Service at the University of Maine, Orono. Projects in this report include: 1. Cooperative Extension Activities 2. Plan of Work - FY 1980 3. Weed Control in Lowbush Blueberry Fields 4. Pruning of Blueberries 5. Integrated Management of Blueberry Fields 6. Physiology and Culture of the Lowbush Blueberry 7. Effect of Plant-Water Stress on Lowbush Blueberry Growth, Yield and Quality 8. Blueberry Pathology 9. Botrytis Blossom Blight of Lowbush Blueberries 10. Insects Affecting the Blueberr

    Making the link between critical appraisal, thinking and analysis

    Get PDF
    Nursing has become an all-graduate profession; as such, student nurses must develop their skills of critical analysis. The need to develop critical analytical thinking has been identified as the single most important skill in undergraduate education and reaching the academic requirements of level six study. In degree-level healthcare programmes, students are frequently asked to complete a structured critical appraisal of research. This paper examines how critical appraisal activities can be an opportunity for students to develop transferable critical thinking skills. Critical appraisal teaches objectivity, reflection, logic and discipline, which encourage students to think critically in both theory and practice.N/

    VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses

    Get PDF
    Background Viruses are a significant player in many biosphere and human ecosystems, but most signals remain “hidden” in metagenomic/metatranscriptomic sequence datasets due to the lack of universal gene markers, database representatives, and insufficiently advanced identification tools. Results Here, we introduce VirSorter2, a DNA and RNA virus identification tool that leverages genome-informed database advances across a collection of customized automatic classifiers to improve the accuracy and range of virus sequence detection. When benchmarked against genomes from both isolated and uncultivated viruses, VirSorter2 uniquely performed consistently with high accuracy (F1-score > 0.8) across viral diversity, while all other tools under-detected viruses outside of the group most represented in reference databases (i.e., those in the order Caudovirales). Among the tools evaluated, VirSorter2 was also uniquely able to minimize errors associated with atypical cellular sequences including eukaryotic genomes and plasmids. Finally, as the virosphere exploration unravels novel viral sequences, VirSorter2’s modular design makes it inherently able to expand to new types of viruses via the design of new classifiers to maintain maximal sensitivity and specificity. Conclusion With multi-classifier and modular design, VirSorter2 demonstrates higher overall accuracy across major viral groups and will advance our knowledge of virus evolution, diversity, and virus-microbe interaction in various ecosystems. Source code of VirSorter2 is freely available ( https://bitbucket.org/MAVERICLab/virsorter2 ), and VirSorter2 is also available both on bioconda and as an iVirus app on CyVerse ( https://de.cyverse.org/de ). Video abstrac

    e-Pilly TROP Maladies infectieuses tropicales

    Get PDF
    L’e-Pilly TROP est un ouvrage d’infectiologie tropicale destiné aux médecins et aux étudiants en médecine des pays francophones du Sud. La prise en compte des différents niveaux de la pyramide sanitaire dans ces pays le rend aussi accessible aux infirmiers des centres de santé communautaires urbains et des structures de santé intermédiaires des zones rurales. Par définition, les Pays En Développement accroissant progressivement leurs capacités de diagnostic biologique et de traitement, les outils de prise en charge correspondent aux moyens des niveaux périphériques comme à ceux des niveaux hospitaliers de référence

    Substrate Type Determines Metagenomic Profiles from Diverse Chemical Habitats

    Get PDF
    Environmental parameters drive phenotypic and genotypic frequency variations in microbial communities and thus control the extent and structure of microbial diversity. We tested the extent to which microbial community composition changes are controlled by shifting physiochemical properties within a hypersaline lagoon. We sequenced four sediment metagenomes from the Coorong, South Australia from samples which varied in salinity by 99 Practical Salinity Units (PSU), an order of magnitude in ammonia concentration and two orders of magnitude in microbial abundance. Despite the marked divergence in environmental parameters observed between samples, hierarchical clustering of taxonomic and metabolic profiles of these metagenomes showed striking similarity between the samples (>89%). Comparison of these profiles to those derived from a wide variety of publically available datasets demonstrated that the Coorong sediment metagenomes were similar to other sediment, soil, biofilm and microbial mat samples regardless of salinity (>85% similarity). Overall, clustering of solid substrate and water metagenomes into discrete similarity groups based on functional potential indicated that the dichotomy between water and solid matrices is a fundamental determinant of community microbial metabolism that is not masked by salinity, nutrient concentration or microbial abundance
    corecore