25 research outputs found

    Magnetically self-regulated formation of early protoplanetary discs

    Get PDF
    The formation of protoplanetary discs during the collapse of molecular dense cores is significantly influenced by angular momentum transport, notably by the magnetic torque. In turn, the evolution of the magnetic field is determined by dynamical processes and non-ideal MHD effects such as ambipolar diffusion. Considering simple relations between various timescales characteristic of the magnetized collapse, we derive an expression for the early disc radius, r \simeq 18 \, {\rm AU} \, \left({\eta_{\rm AD} / 0.1 \, {\rm s}} \right)^{2/9} \left({B_z / 0.1\, {\rm G}} \right) ^{-4/9} \left({M / 0.1 \msol} \right) ^{1/3}, where MM is the total disc plus protostar mass, ηAD\eta_\mathrm{AD} is the ambipolar diffusion coefficient and BzB_z is the magnetic field in the inner part of the core. This is about significantly smaller than the discs that would form if angular momentum was conserved. The analytical predictions are confronted against a large sample of 3D, non-ideal MHD collapse calculations covering variations of a factor 100 in core mass, a factor 10 in the level of turbulence, a factor 5 in rotation, and magnetic mass-to-flux over critical mass-to-flux ratios 2 and 5. The disc radius estimates are found to agree with the numerical simulations within less than a factor 2. A striking prediction of our analysis is the weak dependence of circumstellar disc radii upon the various relevant quantities, suggesting weak variations among class-0 disc sizes. In some cases, we note the onset of large spiral arms beyond this radius.This research has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 247060 and no. 306483). We acknowledge financial support from ”Programme National de Physique Stellaire” (PNPS) of CNRS/INSU, France

    Collapse, outflows and fragmentation of massive, turbulent and magnetized prestellar barotropic cores

    Get PDF
    Stars and more particularly massive stars, have a drastic impact on galaxy evolution. Yet the conditions in which they form and collapse are still not fully understood. In particular, the influence of the magnetic field on the collapse of massive clumps is relatively unexplored, it is thus of great relevance in the context of the formation of massive stars to investigate its impact. We perform high resolution, MHD simulations of the collapse of hundred solar masses, turbulent and magnetized clouds, using the adaptive mesh refinement code RAMSES. We compute various quantities such as mass distribution, magnetic field and angular momentum within the collapsing core and study the episodic outflows and the fragmentation that occurs during the collapse. The magnetic field has a drastic impact on the cloud evolution. We find that magnetic braking is able to substantially reduce the angular momentum in the inner part of the collapsing cloud. Fast and episodic outflows are being launched with typical velocities of the order of 3-5 km s1^{-1} although the highest velocities can be as high as 30-40 km s1^{-1}. The fragmentation in several objects, is reduced in substantially magnetized clouds with respect to hydrodynamical ones by a factor of the order of 1.5-2. We conclude that magnetic fields have a significant impact on the evolution of massive clumps. In combination with radiation, magnetic fields largely determine the outcome of massive core collapse. We stress that numerical convergence of MHD collapse is a challenging issue. In particular, numerical diffusion appears to be important at high density therefore possibly leading to an over-estimation of the number of fragments.Comment: accepted for publication in A&

    Simulations of protostellar collapse using multigroup radiation hydrodynamics. II. The second collapse

    Get PDF
    15 pages, 11 figures, accepted for publication in A&AStar formation begins with the gravitational collapse of a dense core inside a molecular cloud. As the collapse progresses, the centre of the core begins to heat up as it becomes optically thick. The temperature and density in the centre eventually reach high enough values where fusion reactions can ignite; the protostar is born. This sequence of events entail many physical processes, of which radiative transfer is of paramount importance. Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. However, interstellar gas and dust opacities present large variations as a function of frequency. In this paper, we follow-up on a previous paper on the collapse and formation of Larson's first core using multigroup radiation hydrodynamics (Paper I) by extending the calculations to the second phase of the collapse and the formation of Larson's second core. We have made the use of a non-ideal gas equation of state as well as an extensive set of spectral opacities in a spherically symmetric fully implicit Godunov code to model all the phases of the collapse of a 0.1, 1 and 10 solar mass cloud cores. We find that, for a same central density, there are only small differences between the grey and multigroup simulations. The first core accretion shock remains supercritical while the shock at the second core border is found to be strongly subcritical with all the accreted energy being transfered to the core. The size of the first core was found to vary somewhat in the different simulations (more unstable clouds form smaller first cores) while the size, mass and temperature of the second cores are independent of initial cloud mass, size and temperature. Our simulations support the idea of a standard (universal) initial second core size of 0.003 AU and mass 0.0014 solar masses

    What is the role of stellar radiative feedback in setting the stellar mass spectrum?

    Get PDF
    This is the author accepted manuscript. The final version is available from IOP Publishing via the DOI in this recordIn spite of decades of theoretical efforts, the physical origin of the stellar initial mass function (IMF) is still debated. Particularly crucial is the question of what sets the peak of the distribution. To investigate this issue, we perform high-resolution numerical simulations with radiative feedback exploring, in particular, the role of the stellar and accretion luminosities. We also perform simulations with a simple effective equation of state (EOS), and we investigate 1000 solar-mass clumps having, respectively, 0.1 and 0.4 pc of initial radii. We found that most runs, both with radiative transfer or an EOS, present similar mass spectra with a peak broadly located around 0.3–0.5 M ⊙ and a power-law-like mass distribution at higher masses. However, when accretion luminosity is accounted for, the resulting mass spectrum of the most compact clump tends to be moderately top-heavy. The effect remains limited for the less compact one, which overall remains colder. Our results support the idea that rather than the radiative stellar feedback, this is the transition from the isothermal to the adiabatic regime, which occurs at a gas density of about 1010 cm−3, that is responsible for setting the peak of the IMF. This stems from (i) the fact that extremely compact clumps for which the accretion luminosity has a significant influence are very rare and (ii) the luminosity problem, which indicates that the effective accretion luminosity is likely weaker than expected.European Research Council (ERC

    Fragmentation properties of massive protocluster gas clumps: an ALMA study

    Get PDF
    Fragmentation of massive dense molecular clouds is the starting point in the formation of rich clusters and massive stars. Theory and numerical simulations indicate that the population of the fragments (number, mass, diameter, and separation) resulting from the gravitational collapse of such clumps is probably regulated by the balance between the magnetic field and the other competitors of self-gravity, in particular, turbulence and protostellar feedback. We have observed 11 massive, dense, and young star-forming clumps with the Atacama Large Millimeter Array (ALMA) in the thermal dust continuum emission at similar to 1 mm with an angular resolution of 0 \u27\u27.25 with the aim of determining their population of fragments. The targets have been selected from a sample of massive molecular clumps with limited or absent star formation activity and hence limited feedback. We find fragments on sub-arcsecond scales in 8 out of the 11 sources. The ALMA images indicate two different fragmentation modes: a dominant fragment surrounded by companions with much lower mass and smaller size, and many (>= 8) fragments with a gradual change in masses and sizes. The morphologies are very different, with three sources that show filament-like distributions of the fragments, while the others have irregular geometry. On average, the largest number of fragments is found towards the warmer and more massive clumps. The warmer clumps also tend to form fragments with higher mass and larger size. To understand the role of the different physical parameters in regulating the final population of the fragments, we simulated the collapse of a massive clump of 100 and 300 M-circle dot with different magnetic support. The 300 M-circle dot case was also run for different initial temperatures and Mach numbers M to evaluate the separate role of each of these parameters. The simulations indicate that (1) fragmentation is inhibited when the initial turbulence is low (M similar to 3), independent of the other physical parameters. This would indicate that the number of fragments in our clumps can be explained assuming a high (M similar to 6) initial turbulence, although an initial density profile different to that assumed can play a relevant role. (2) A filamentary distribution of the fragments is favoured in a highly magnetised clump. We conclude that the clumps that show many fragments distributed in a filament-like structure are likely characterised by a strong magnetic field, while the other morphologies are also possible in a weaker magnetic field

    The first Galaxy scale hunt for the youngest high-mass protostars

    Get PDF
    The origin of massive stars is a fundamental open issue in modern astrophysics. Pre-ALMA interferometric studies reveal precursors to early B to late O type stars with collapsing envelopes of 15-20 M_\odot on 1000-3000 AU size-scales. To search for more massive envelopes we selected the most massive nearby young clumps from the ATLASGAL survey to study their protostellar content with ALMA. Our first results using the intermediate scales revealed by the ALMA ACA array providing 3-5" angular resolution, corresponding to \sim0.05-0.1 pc size-scales, reveals a sample of compact objects. These massive dense cores are on average two-times more massive than previous studies of similar types of objects. We expect that once the full survey is completed, it will provide a comprehensive view on the origin of the most massive stars

    Gas phase Elemental abundances in Molecular cloudS (GEMS) : II. On the quest for the sulphur reservoir in molecular clouds: the H2S case

    Get PDF
    Context. Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question.Aims. Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir.Methods. Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model NAUTILUS is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance.Results. Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n(H) > 2 x 10(4). This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5-10. Along the three cores, atomic S is predicted to be the main sulphur reservoir.Conclusions. The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.Peer reviewe

    Gas phase Elemental abundances in Molecular cloudS (GEMS) : IV. Observational results and statistical trends

    Get PDF
    Gas phase Elemental abundances in Molecular CloudS (GEMS) is an IRAM 30 m Large Program designed to provide estimates of the S, C, N, and O depletions and gas ionization degree, X(e(-)), in a selected set of star-forming filaments of Taurus, Perseus, and Orion. Our immediate goal is to build up a complete and large database of molecular abundances that can serve as an observational basis for estimating X(e(-)) and the C, O, N, and S depletions through chemical modeling. We observed and derived the abundances of 14 species ((CO)-C-13, (CO)-O-18, HCO+, (HCO+)-C-13, (HCO+)-O-18, HCN, (HCN)-C-13, HNC, HCS+, CS, SO, (SO)-S-34, H2S, and OCS) in 244 positions, covering the A(V) similar to 3 to similar to 100 mag, n(H-2) similar to a few 10(3) to 10(6) cm(-3), and T-k similar to 10 to similar to 30 K ranges in these clouds, and avoiding protostars, HII regions, and bipolar outflows. A statistical analysis is carried out in order to identify general trends between different species and with physical parameters. Relations between molecules reveal strong linear correlations which define three different families of species: (1) (CO)-C-13 and (CO)-O-18 isotopologs; (2) (HCO+)-C-13, (HCO+)-O-18, H-13 CN, and HNC; and (3) the S-bearing molecules. The abundances of the CO isotopologs increase with the gas kinetic temperature until T-K similar to 15 K. For higher temperatures, the abundance remains constant with a scatter of a factor of similar to 3. The abundances of H-13 CO+, HC18 O+, H-13 CN, and HNC are well correlated with each other, and all of them decrease with molecular hydrogen density, following the law proportional to n(H-2)(-0.8 +/- 0.2). The abundances of S-bearing species also decrease with molecular hydrogen density at a rate of (S-bearing/H)(gas) proportional to n(H-2)(-0.6 +/- 0.1). The abundances of molecules belonging to groups 2 and 3 do not present any clear trend with gas temperature. At scales of molecular clouds, the (CO)-O-18 abundance is the quantity that better correlates with the cloud mass. We discuss the utility of the (CO)-C-13/(CO)-O-18, HCO+/(HCO+)-C-13, and H-13 CO+/(HCN)-C-13 abundance ratios as chemical diagnostics of star formation in external galaxies.Peer reviewe

    Gas phase Elemental abundances in Molecular cloudS (GEMS) : III. Unlocking the CS chemistry: the CS plus O reaction

    Get PDF
    Context. Carbon monosulphide (CS) is among the most abundant gas-phase S-bearing molecules in cold dark molecular clouds. It is easily observable with several transitions in the millimeter wavelength range, and has been widely used as a tracer of the gas density in the interstellar medium in our Galaxy and external galaxies. However, chemical models fail to account for the observed CS abundances when assuming the cosmic value for the elemental abundance of sulfur. Aims. The CS+O -> CO + S reaction has been proposed as a relevant CS destruction mechanism at low temperatures, and could explain the discrepancy between models and observations. Its reaction rate has been experimentally measured at temperatures of 150-400 K, but the extrapolation to lower temperatures is doubtful. Our goal is to calculate the CS+O reaction rate at temperatures Methods. We performed ab initio calculations to obtain the three lowest potential energy surfaces (PES) of the CS+O system. These PESs are used to study the reaction dynamics, using several methods (classical, quantum, and semiclassical) to eventually calculate the CS + O thermal reaction rates. In order to check the accuracy of our calculations, we compare the results of our theoretical calculations for T similar to 150-400 K with those obtained in the laboratory. Results. Our detailed theoretical study on the CS+O reaction, which is in agreement with the experimental data obtained at 150-400 K, demonstrates the reliability of our approach. After a careful analysis at lower temperatures, we find that the rate constant at 10 K is negligible, below 10(-15) cm(3) s(-1), which is consistent with the extrapolation of experimental data using the Arrhenius expression. Conclusions. We use the updated chemical network to model the sulfur chemistry in Taurus Molecular Cloud 1 (TMC 1) based on molecular abundances determined from Gas phase Elemental abundances in Molecular CloudS (GEMS) project observations. In our model, we take into account the expected decrease of the cosmic ray ionization rate, zeta(H2), along the cloud. The abundance of CS is still overestimated when assuming the cosmic value for the sulfur abundance.Peer reviewe
    corecore