2,079 research outputs found
Validation and analysis of regional present-day climate and climate change simulations over Europe
In the European Commission (EC) project "Regionalization of Anthropogenic Climate Change Simulations, RACCS, recently terminated, 11 European institutions have carried out tests of dynamical and statistical regionalization techniques. The outcome of the "dynamical part" of the project, utilizing a series of high resolution LAMs and a variable resolution global model (all of which we shall refer to as RCMs, Regional Climate Models), is presented here. The per- formance of the dqterent LAMs had first, in a preceding EC project, been tested with "perfect" boundary forcing fields (ECMWF analyses) and also multi-year present-day climate simula- tions with AMIP "perfect ocean " or mixed layer ocean GCM boundary conditions had been validated against available climatological data. The present report involves results of vali- dation and analysis of RCM present-day climate simulations and anthropogenic climate change experiments. Multi-year (5 - 30 years) present-day climate simulations have been per- formed with resolutions between 19 and 70 km (grid lengths) and with boundary conditions from the newest CGCM simulations. The climate change experiments involve various 2xCO2 - ]xCO2 transient greenhouse gas experiments and in one case also changing sulphur aerosols. A common validation and inter-comparison was made at the coordinating institution, MPIfor Meteorology. The validation of the present-day climate simulations shows the importance of systematic errors in the low level general circulation. Such errors seem to induce large errors in precipitation and surface air temperature in the RCMs as well as in the CGCMs providing boundary conditions. Over Europe the field of systematic errors in the mean sea level pressure (MSLP) usually involve an area of too low pressure, often in the form of an east-west trough across Europe with too high pressure to the north and south. New storm-track analyses confirm that the areas of too low pressure are caused by enhanced cyclonic activity and similarly that the areas of too high pressure are caused by reduced such activity. The precise location and strength of the extremes in the MSLP error field seems to be dependent on the physical param- eterization package used. In model pairs sharing the same package the area of too low pressure is deepened further in the RCM compared to the corresponding CGCM, indicating an increase of the excessive cyclonic activity with increasing resolution. From the experiments performed it seems not possible to decide to what extent the systematic errors in the general circulation are the result of local errors in the physical parameterization schemes or remote errors trans- mitted to the European region via the boundary conditions. Additional errors in precipitation and temperature seems to be due to direct local effects of errors in certain parameterization schemes and errors in the SSTs taken from the CGCMs. For all seasons many biases are fOund to be statistically significant compared to estimates of the internal model variability of the time- slice mean values. In the climate change experiments statistically significant European mean temperature changes which are large compared to the corresponding biases are found. How- ever, the changes in the deviations from the European mean temperature as well as the changes in precipitation are only partly sign wcan ce and are of the same order of magnitude or smaller than the corresponding biases found in the present-day climate simulations. Cases of an inter- action between the systematic model errors and the radiative forcing show that generally the errors are not canceling out when the changes are computed. Therefore, reliable regional cli- mate changes can only be achieved after model improvements which reduce their systematic errors sufficiently. Also in future RCM experiments sujiciently long time-slices must be used in order to obtain statistically sign ijicant climate changes on the sub-continental scale aimed at with the present regionalization technique
Validation of present-day regional climate simulations over Europe: nested LAM and variable resolution global model simulations with observed or mixed layer ocean boundary conditions
Multi-year high resolution present-day climate simulations were made with two limited area models (LAMs) at UKMO and MPI and with a global variable resolution spectral model at Meteo-France. We shall refer to these models as the regional climate models (RCMs). Together with the RCM simulations we verify the similar multi-year simulations made with the corresponding coarse resolution global models. We refer to these models as the GCMs. They are the two coarse resolution GCMs whose output were used for boundary conditions to the LAM simulations and a homogeneous coarse resolution version (T42) of the Meteo-France GCM. In the Meteo-France and the MPI simulations observed (AMIP) SST and sea-ice distributions were used whereas in the UKMO simulations we used SST and sea-ice distributions determined from a mixed layer ocean model coupled to the GCM. In the present assessment the main emphasis is put on the validation of precipitation and surface air temperature simulations. The relatively large biases or systematic errors in these parameters in both the GCM and RCM simulations seem in most cases to be explained as the result of systematic errors in the surface pressure (or the low level flow) and the cyclone activity. In most remaining cases they seem to be due to defects in specific physical parameterization schemes. The UKMO and Meteo-France simulations are 10-year integrations whereas the MPI simulations are integrations of 46-months only
Research Proposal for an Experiment to Search for the Decay {\mu} -> eee
We propose an experiment (Mu3e) to search for the lepton flavour violating
decay mu+ -> e+e-e+. We aim for an ultimate sensitivity of one in 10^16
mu-decays, four orders of magnitude better than previous searches. This
sensitivity is made possible by exploiting modern silicon pixel detectors
providing high spatial resolution and hodoscopes using scintillating fibres and
tiles providing precise timing information at high particle rates.Comment: Research proposal submitted to the Paul Scherrer Institute Research
Committee for Particle Physics at the Ring Cyclotron, 104 page
Prototype tests for the ALICE TRD
A Transition Radiation Detector (TRD) has been designed to improve the
electron identification and trigger capability of the ALICE experiment at the
Large Hadron Collider (LHC) at CERN. We present results from tests of a
prototype of the TRD concerning pion rejection for different methods of
analysis over a momentum range from 0.7 to 2 GeV/c. We investigate the
performance of different radiator types, composed of foils, fibres and foams.Comment: Presented at the IEEE Nuclear Science Symposium and Medical Imaging
Conference, Lyon, October 15-20, 2000 (accepted for publication in IEEE TNS),
Latex (IEEEtran.cls), 7 pages, 11 eps figure
Energy loss of pions and electrons of 1 to 6 GeV/c in drift chambers operated with Xe,CO2(15%)
We present measurements of the energy loss of pions and electrons in drift
chambers operated with a Xe,CO2(15%) mixture. The measurements are carried out
for particle momenta from 1 to 6 GeV/c using prototype drift chambers for the
ALICE TRD. Microscopic calculations are performed using input parameters
calculated with GEANT3. These calculations reproduce well the measured average
and most probable values for pions, but a higher Fermi plateau is required in
order to reproduce our electron data. The widths of the measured distributions
are smaller for data compared to the calculations. The electron/pion
identification performance using the energy loss is also presented.Comment: 15 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
Space charge in drift chambers operated with the Xe,CO2(15%) mixture
Using prototype modules of the ALICE Transition Radiation Detector we
investigate space charge effects and the dependence of the pion rejection
performance on the incident angle of the ionizing particle. The average pulse
height distributions in the drift chambers operated with the Xe,CO2(15%)
mixture provide quantitative information on the gas gain reduction due to space
charge accumulating during the drift of the primary ionization. Our results
demonstrate that the pion rejection performance of a TRD is better for tracks
which are not at normal incidence to the anode wires. We present detailed
simulations of detector signals, which reproduce the measurements and lend
strong support to our interpretation of the measurements in terms of space
charge effects.Comment: 18 pages, 10 figures, accepted for publication in Nucl.Instrum.Meth.
A. Data files available at http://www-alice.gsi.de/tr
Event-by-event fluctuations at SPS
Results on event-by-event fluctuations of the mean transverse momentum and
net charge in Pb-Au collisions, measured by the CERES Collaboration at
CERN-SPS, are presented. We discuss the centrality and beam energy dependence
and compare our data to cascade calculations.Comment: 4 pages, 4 figures, proceedings to INPC2004 Goteborg, Swede
New Results on Pb-Au Collisions at 40 AGeV from the CERES/NA45 Experiment
In 1999 the CERES/NA45 ran at the CERN SPS with a beam energy of 40
GeV/nucleon. The data set comprises about 8.7 millions Pb-Au events with a
trigger selection corresponding to approximately the most central 30% of the
geometrical cross section. Results on low-mass electron pair analysis are
presented.
The upgrade of the experimental setup with the radial drift TPC has allowed
to enhance hadron physics capabilities of the experiment. New results on hadron
spectra (including Lambda) and flow are presented.Comment: Talk at the International Nuclear Physics Conference INPC2001,
Berkeley, CA, July 29th - August 3rd 200
Position Reconstruction in Drift Chambers operated with Xe, CO2 (15%)
We present measurements of position and angular resolution of drift chambers
operated with a Xe,CO(15%) mixture. The results are compared to Monte Carlo
simulations and important systematic effects, in particular the dispersive
nature of the absorption of transition radiation and non-linearities, are
discussed. The measurements were carried out with prototype drift chambers of
the ALICE Transition Radiation Detector, but our findings can be generalized to
other drift chambers with similar geometry, where the electron drift is
perpendicular to the wire planes.Comment: 30 pages, 18 figure
- …