Validation of present-day regional climate simulations over Europe: nested LAM and variable resolution global model simulations with observed or mixed layer ocean boundary conditions

Abstract

Multi-year high resolution present-day climate simulations were made with two limited area models (LAMs) at UKMO and MPI and with a global variable resolution spectral model at Meteo-France. We shall refer to these models as the regional climate models (RCMs). Together with the RCM simulations we verify the similar multi-year simulations made with the corresponding coarse resolution global models. We refer to these models as the GCMs. They are the two coarse resolution GCMs whose output were used for boundary conditions to the LAM simulations and a homogeneous coarse resolution version (T42) of the Meteo-France GCM. In the Meteo-France and the MPI simulations observed (AMIP) SST and sea-ice distributions were used whereas in the UKMO simulations we used SST and sea-ice distributions determined from a mixed layer ocean model coupled to the GCM. In the present assessment the main emphasis is put on the validation of precipitation and surface air temperature simulations. The relatively large biases or systematic errors in these parameters in both the GCM and RCM simulations seem in most cases to be explained as the result of systematic errors in the surface pressure (or the low level flow) and the cyclone activity. In most remaining cases they seem to be due to defects in specific physical parameterization schemes. The UKMO and Meteo-France simulations are 10-year integrations whereas the MPI simulations are integrations of 46-months only

    Similar works