404 research outputs found

    Chromatin meets RNA polymerase II

    Get PDF
    A report on the Cold Spring Harbor Laboratory meeting 'Mechanisms of eukaryotic transcription', Cold Spring Harbor, USA, 2 August-2 September 2007

    A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    Get PDF
    We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of ∌<_{\sim}^<1038^{38} erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038^{38} erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary.Comment: Accepted for publication in ApJ (25 pages, 17 figures

    Blazars in the Fermi Era: The OVRO 40-m Telescope Monitoring Program

    Get PDF
    The Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope provides an unprecedented opportunity to study gamma-ray blazars. To capitalize on this opportunity, beginning in late 2007, about a year before the start of LAT science operations, we began a large-scale, fast-cadence 15 GHz radio monitoring program with the 40-m telescope at the Owens Valley Radio Observatory (OVRO). This program began with the 1158 northern (declination>-20 deg) sources from the Candidate Gamma-ray Blazar Survey (CGRaBS) and now encompasses over 1500 sources, each observed twice per week with a ~4 mJy (minimum) and 3% (typical) uncertainty. Here, we describe this monitoring program and our methods, and present radio light curves from the first two years (2008 and 2009). As a first application, we combine these data with a novel measure of light curve variability amplitude, the intrinsic modulation index, through a likelihood analysis to examine the variability properties of subpopulations of our sample. We demonstrate that, with high significance (7-sigma), gamma-ray-loud blazars detected by the LAT during its first 11 months of operation vary with about a factor of two greater amplitude than do the gamma-ray-quiet blazars in our sample. We also find a significant (3-sigma) difference between variability amplitude in BL Lacertae objects and flat-spectrum radio quasars (FSRQs), with the former exhibiting larger variability amplitudes. Finally, low-redshift (z<1) FSRQs are found to vary more strongly than high-redshift FSRQs, with 3-sigma significance. These findings represent an important step toward understanding why some blazars emit gamma-rays while others, with apparently similar properties, remain silent.Comment: 23 pages, 24 figures. Submitted to ApJ

    POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

    Get PDF
    The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission is being designed to establish charged-particle astronomy with ultra-high energy cosmic rays (UHECRs) and to observe cosmogenic tau neutrinos (CTNs). The study of UHECRs and CTNs from space will yield orders-of-magnitude increase in statistics of observed UHECRs at the highest energies, and the observation of the cosmogenic flux of neutrinos for a range of UHECR models. These observations should solve the long-standing puzzle of the origin of the highest energy particles ever observed, providing a new window onto the most energetic environments and events in the Universe, while studying particle interactions well beyond accelerator energies. The discovery of CTNs will help solve the puzzle of the origin of UHECRs and begin a new field of Astroparticle Physics with the study of neutrino properties at ultra-high energies.Comment: 8 pages, in the Proceedings of the 35th International Cosmic Ray Conference, ICRC217, Busan, Kore

    Nonspecific Protein-DNA Binding Is Widespread in the Yeast Genome

    Get PDF
    Recent genome-wide measurements of binding preferences of ~200 transcription regulators in the vicinity of transcription start sites in yeast, have provided a unique insight into the cis- regulatory code of a eukaryotic genome (Venters et al., Mol. Cell 41, 480 (2011)). Here, we show that nonspecific transcription factor (TF)-DNA binding significantly influences binding preferences of the majority of transcription regulators in promoter regions of the yeast genome. We show that promoters of SAGA-dominated and TFIID-dominated genes can be statistically distinguished based on the landscape of nonspecific protein-DNA binding free energy. In particular, we predict that promoters of SAGA-dominated genes possess wider regions of reduced free energy compared to promoters of TFIID-dominated genes. We also show that specific and nonspecific TF-DNA binding are functionally linked and cooperatively influence gene expression in yeast. Our results suggest that nonspecific TF-DNA binding is intrinsically encoded into the yeast genome, and it may play a more important role in transcriptional regulation than previously thought

    A Focused, Hard X-ray Look at Arp 299 with NuSTAR

    Get PDF
    We report on simultaneous observations of the local starburst system Arp 299 with NuSTAR and Chandra, which provides the first resolved images of this galaxy up to energies of ~ 45 keV. Fitting the 3-40 keV spectrum reveals a column density of NHN_{\rm H} ~ 4 x10^{24} cm^{-2}, characteristic of a Compton-thick AGN, and a 10-30 keV luminosity of 1.2x 10^{43} ergs s^{-1}. The hard X-rays detected by NuSTAR above 10 keV are centered on the western nucleus, Arp 299-B, which previous X-ray observations have shown to be the primary source of neutral Fe-K emission. Other X-ray sources, including Arp 299-A, the eastern nucleus which is also thought to harbor an AGN, as well as X-ray binaries, contribute â‰Č10\lesssim 10% to the 10-20 keV emission from the Arp 299 system. The lack of significant emission above 10 keV other than that attributed to Arp 299-B suggests that: a) any AGN in Arp 299-A must be heavily obscured (NHN_{\rm H} > 10^{24} cm^{-2}) or have a much lower luminosity than Arp 299-B and b) the extranuclear X-ray binaries have spectra that cut-off above ~10 keV. Such soft spectra are characteristic of ultraluminous X-ray (ULX) sources observed to date by NuSTAR.Comment: 9 pages; accepted for publication in Astrophysical Journa

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Bright AGN Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey

    Full text link
    The first three months of sky-survey operation with the Fermi Gamma Ray Space Telescope (Fermi) Large Area Telescope (LAT) reveals 132 bright sources at |b|>10 deg with test statistic greater than 100 (corresponding to about 10 sigma). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicate high-confidence associations of 106 of these sources with known AGNs. This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of 57 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and 5 blazars with uncertain classification. Four new blazars were discovered on the basis of the LAT detections. Remarkably, the LBAS includes 10 high-energy peaked BL Lacs (HBLs), sources which were so far hard to detect in the GeV range. Another 10 lower-confidence associations are found. Only thirty three of the sources, plus two at |b|>10 deg, were previously detected with EGRET, probably due to the variable nature of these sources. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. No significant correlation between radio and peak gamma-ray fluxes is observed. Blazar log N - log S and luminosity functions are constructed to investigate the evolution of the different blazar classes, with positive evolution indicated for FSRQs but none for BLLacs. The contribution of LAT-blazars to the total extragalactic gamma-ray intensity is estimated.Comment: Submitted to ApJ. Not yet refereed. 61 pages, 26 figure
    • 

    corecore