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Nonspecific Protein-DNA Binding Is Widespread in the Yeast Genome
Ariel Afek and David B. Lukatsky*
Department of Chemistry, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
ABSTRACT Recent genome-wide measurements of binding preferences of ~200 transcription regulators in the vicinity of
transcription start sites in yeast, have provided a unique insight into the cis-regulatory code of a eukaryotic genome. Here,
we show that nonspecific transcription factor (TF)-DNA binding significantly influences binding preferences of the majority
of transcription regulators in promoter regions of the yeast genome. We show that promoters of SAGA-dominated and
TFIID-dominated genes can be statistically distinguished based on the landscape of nonspecific protein-DNA binding free
energy. In particular, we predict that promoters of SAGA-dominated genes possess wider regions of reduced free energy
compared to promoters of TFIID-dominated genes. We also show that specific and nonspecific TF-DNA binding are functionally
linked and cooperatively influence gene expression in yeast. Our results suggest that nonspecific TF-DNA binding is intrinsically
encoded into the yeast genome, and it may play a more important role in transcriptional regulation than previously thought.
INTRODUCTION
High-throughput measurements of protein-DNA
binding in vivo

Specific transcription factor (TF) binding to genomicDNA in
promoter regions is a keymechanism regulating gene expres-
sion in both prokaryotic and eukaryotic organisms. Recent
advances in high-throughputmethods ofmeasuring TF-DNA
binding preferences genome-wide in vivo, such as chromatin
immunoprecipitation (ChIP) followed by microarray anal-
ysis (ChIP-chip), or followed by high-throughput sequencing
analysis (ChIP-seq), provide a remarkable snapshot of the
physical interaction map that exists within a living cell in
different organisms (1–8). Thesemeasurements have demon-
strated quite generally that TFs extensively bind thousands of
active and inactive regions across the genome, and strikingly,
in many cases no specific TF binding sites (TFBSs) can be
identified in the regions of particularly strong binding
(3–6). These observations have thus challenged the classical
picture of specific TF-DNA binding. In their recent, seminal
work, Venters et al. (1) havemeasured binding preferences of
202 regulatory, DNA-binding proteins in three representative
genomic regions in yeast. This work provides themost exten-
sive view of TF-DNA binding currently in yeast, and it
concludes that over 90% of yeast promoter regions are sig-
nificantly occupied by more than 10 regulators, and ~10%
are occupied by at least 75 regulators. The key, open question
is what determines binding preferences of these regulators
toward genomic DNA?

Definition and design principles of nonspecific
(nonconsensus) protein-DNA binding

The existence and functional importance of nonspecific
protein-DNA binding in Escherichia coliwere demonstrated
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in the early seventies of the last century in seminal experi-
mental works of Riggs et al. (9), and Hinkle and Chamberlin
(10); and in seminal theoretical works of von Hippel et al.
(11–15), and Richter and Eigen (16). These early works
suggested that DNA-binding proteins use different confor-
mations in specific and nonspecific protein-DNA binding
modes, respectively. Recent direct biophysical measure-
ments performed both in vivo (17) and in vitro (18–22),
unambiguously show that nonspecific protein-DNA binding
is widespread in genomes of different organisms.

As presented in seminal works of von Hippel and Berg
(13–15), the notion of nonspecific protein-DNA binding
can be schematically described by two key-related mecha-
nisms. The first mechanism is largely sequence-independent
DNA, and it is entirely based i), on the overall electrostatic
attraction between DNA-binding proteins (such as TFs) and
DNA, and ii), on the overall geometry of DNA (13). The
second mechanism assumes that for any sequence-specific
DNA-binding protein, any DNA sequence, which is similar
enough to canonical recognition motifs (consensus se-
quences) of this protein, possesses some residual protein-
DNA binding affinity. For example, the yeast transcription
factor Reb1 binds the TTACCCG motif with a relatively
high affinity, and hence, any sequence similar to this con-
sensus sequence is expected to possess a higher affinity to
Reb1 than an entirely unrelated sequence (23). The fact
that statistically, there is a high probability of having such
sequence in many genomic locations by pure chance, might
lead to nonspecific protein-DNA binding (13,24).

We have recently suggested the existence of an addi-
tional, nonconsensus nonspecific protein-DNA binding
mechanism (25,26). By using the term nonconsensus non-
specific binding we mean to express the fact that the pre-
dicted binding affinity is computed without experimental
knowledge of the high-affinity sites for the TFs. In what
follows, we always mean such nonconsensus nonspecific
TF-DNA binding. In particular, we predicted analytically
doi: 10.1016/j.bpj.2012.03.044
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that correlation properties of genomic DNA sequences
generically regulate the nonspecific TF-DNA binding
affinity (25). We use the term correlation to describe statis-
tically significant repeats of DNA sequence patterns. For
example, we predicted that homooligonucleotide sequence
correlations, where nucleotides of the same type are clus-
tered together (such as poly(dA:dT) and poly(dC:dG) tracts)
generically enhance the nonspecific TF-DNA binding
affinity. Sequence correlations in which nucleotides of
different types alternate have the opposite effect, reducing
the nonspecific TF-DNA binding affinity (25). Because
the predicted effect stems from the intrinsic symmetry prop-
erties of DNA sequences, we suggested that it is quite
general, and qualitatively robust with respect to microscopic
details of the protein-DNA interaction potential (25). We
also note that the predicted effect is entropy dominated,
and it assumes that TFs sample all possible binding sites
along DNA (25,26).
Synopsis of obtained results

Here, having obtained experimental binding preferences of
202DNAbinding proteins (1),we thought to answer the ques-
tion of what role does nonspecific (nonconsensus) protein-
DNA binding play in a living yeast cell, genome-wide?

To address this question, here we compute the nonspecific
binding free energy of random protein-DNA binders. We
use the term random binder to emphasize the fact that model
TFs bind genomic DNA nonspecifically. We compute statis-
tical properties of such nonspecific binding. Strikingly, we
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show that nonspecific binding alone can explain statistical
binding preferences observed experimentally. Our results
provide further support of the hypothesis that nucleosome
occupancy in yeast is significantly influenced by nonspecific
TF-DNA binding (26).

We note that in the experiments that we are using for this
analysis (1), TFs can be cross-linked and immunoprecipi-
tated in association with a given DNA segment by virtue
of at least four kinds of interactions. i), Binding to the local
DNA. ii), Cooperative binding to a combination of local
DNA and other locally bound TFs. iii), Cooperative binding
only to other locally bound TFs and not to DNA. iv),
Binding to nascent RNA transcripts and/or proteins bound
to nascent RNA transcripts. Our theoretical analysis of pro-
tein-DNA binding affinity focuses largely on mechanism (i).
Yet, because all our predictions are statistical in nature, and
the number of experimentally measured TFBSs is very
large, we suggest that all our conclusions are quite general,
and most likely represent the statistical law, rather than the
exception.

This work is organized as follows. First, we describe our
method to compute the nonspecific TF-DNA binding free
energy landscape. Second, we show that nonspecific
TF-DNA binding significantly influences experimentally
observed TF-DNA binding preferences in promoter regions
of the yeast genome, Fig. 1 and Fig. 2. Third, we show that
promoter regions of highly regulated (e.g., SAGA domi-
nated) and weakly regulated (e.g., TFIID dominated) genes
are characterized by distinct profiles of the nonspecific
binding free energy, Fig. 3. In conclusion, we show that
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FIGURE 1 (A)Average free energyofnonspecific

TF-DNA binding per bp, hDf i ¼ hhDFiTFiseq=M,

computed within the interval (�384,384) for the

two groups of genes selected according to the exper-

imentally measured average TF occupancy in the

TSS region: 10% highest TF occupancy in the TSS

region (red) and 10% lowest TF occupancy in the

TSS region (blue). Each group contains 496 genes.

Horizontal bar, marked TSS, on the x axis, shows

the corresponding region where the TF occupancy

was measured. (B) Similar to (A), but the two groups

of genes are selected according to the experimentally

measured average TF occupancy in the UAS region.

Horizontal bar,markedUAS, on the x axis, shows the

corresponding region where the TF occupancy was

measured. (C) Correlation between the minimal

value of the free energy of nonspecific TF-DNA

binding within the TSS regions, Dfmin ¼
minðhDFiTFÞ=M, and the average TF occupancy

within this region. Genes were binned into 10 bins

according to the value of the average TF occupancy.

Each point in the graph corresponds to the average,

hDfmini, for the genes in a given bin plotted as a func-
tion of the experimentally measured average TF

occupancy for the genes in this bin. (D) Analogous

to (C), but for hDfmini computed within the UAS

regions, plotted versus the average TF occupancy

measuredwithin theUAS regions, as described inC.
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FIGURE 2 (A and B) Number of promoter

regions (TSSs and UASs) (black) and coding

regions (ORFs) (red) occupied by the number of

regulators (i.e., TFs) indicated along the x axis,

as computed using the model of nonspecific TF-

DNA binding (A) and experimental data from (1).

(B) This corresponds to Fig. 2 A of (1). In the

computational prediction we assumed that a given

genomic region is occupied by a given TF if the

minimal free energy of nonspecific TF-DNA

binding (within this genomic region) is less than

the cutoff value of �1 kBT, and we used 250

TFs in the computation (Materials and Methods).

To compute error bars, we divided all genes into

four subgroups, and computed the corresponding

occupancy separately for each subgroup. The error

bars are defined as one standard deviation of the

occupancy between the subgroups. Inset in each

panel shows the occupancy for the entire set of

~5000 genes. (C and D) Analogous to the insets

in A and B, but with the cumulative TF occupancy

computed separately for TSSs and UASs. We used

M¼ 8 for the TF length in all our calculation of the

free energy.
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the level of gene expression in yeast grown in YPD medium
is correlated with the landscape of the nonspecific binding
free energy in promoter regions, Fig. 4 and Fig. 5.
MATERIALS AND METHODS

Gene set

In our analysis, we used a highly confident set of 4962 yeast genes from

(27). We used the following terms, adopted from (1), to describe three types

of genomic regions: transcription start sites (TSSs) located in the interval
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FIGURE 3 (A) Average free energy of nonspecific TF-DNA binding per

bp, hDf i, computed within the interval (�384,384) for the highly confident

SAGA-dominated and TFIID-dominated groups of genes, respectively.

There are 40 SAGA-dominated, TATA-containing genes and 178 TFIID-

dominated, TATA-less, nonribosomal protein genes, respectively (these

highly confident groups are taken from (1)). (B) Average free energy of

nonspecific TF-DNA binding per bp, hDf i, computed within the interval

(�384,384) for the high and low transcriptional plasticity genes, respec-

tively. There are 732 genes in each group. To compute error bars, we

divided each group of genes into five arbitrary subgroups, computed hDf i
in each of the subgroups, and computed the standard deviation of hDf i
between the subgroups. Error bars correspond to one standard deviation.
(�90,�30), upstream activating sequences (UASs) located in the interval

(�320,�260), and open reading frames (ORFs) located in the 30 end of

the coding regions. The zero of the coordinate system is located in the tran-

scription start site for each gene. We note that in (1) the ORF regions were

positioned in slightly different genomic locations in different genes, down-

stream of the transcription start site, Table S2 of (1). In our analysis we used

the precise, experimental location of the ORF for each gene.
Experimental TF occupancy

The experimental average TF occupancy in each of the three genomic loca-

tions, TSSs, UASs, and ORFs, measured in (1), is defined for each gene in

the following way. For each gene, in each genomic location, we computed

the average occupancy of all regulators from Table S2 of (1), measured

at temperature of 25�C. Only regulators with the occupancy above 5%

threshold for false discover rate reported in (1) are taken into account in

the calculation of the average TF occupancy. At the end of this procedure,

each genomic location, TSSs, UASs, and ORFs, respectively, in each gene

is assigned a value of the average TF occupancy.
Gene expression data

The experimental gene expression data in YPD medium is taken from (28).
SAGA-dominated and TFIID-dominated genes

To compute Fig. 3 A, we extracted the sets of 40 SAGA-dominated, TATA-

containing genes and 178 TFIID-dominated, TATA-less, nonribosomal

protein genes, from Table S6 of (1). The extended list of all known

SAGA-dominated and TFIID-dominated genes is taken from (29).
Transcriptional plasticity

To compute Fig. 3 B, we used the classification of transcriptional plasticity

from (30), and refined in (31).
Biophysical Journal 102(8) 1881–1888
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FIGURE 4 (A) Correlation between the minimal

value of the free energy of nonspecific TF-DNA

binding in the promoter region, within the interval

(�150,0),Dfmin ¼ DFmin=M, and the average value

of gene expression within this region. All ~5000

genes were binned into 25 bins according to the

level of gene expression. Each point in the graph

corresponds to the average, hDfmini, for the genes

in a given bin plotted as a function of the experi-

mentally measured average level of gene expres-

sion for the genes in this bin. (B) Correlation

between the computed number of nonspecific

TFBNs within the interval (�150,0), and the level

of gene expression. A given genomic coordinate is

assigned to belong to nonspecific TFBN, if the

average free energy of nonspecific TF-DNA

binding per nucleotide is smaller than a given

cutoff value, Df<� 0:25 kBT. (C) Correlation

between the number of specific TFBSs and the

gene expression. The information about specific

TFBSs is taken from (33). (D) Correlation between

the number of specific TFBSs and the number

nonspecific TFBNs. The binning in B–D is pre-

formed as in A.
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p-value calculations

Fig. 1, A and B: To compute the p-values, first, we selected 105 pairs of

groups of randomly chosen 496 genes. Each pair of groups represents

randomized analogs of the highest occupancy and the lowest occupancy

genes, respectively. Second, for each of these pairs of random groups we
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FIGURE 5 Analysis of experimental results from (1): Correlation between the

(B), and ORF (C) regions, respectively. Genes were binned into 25 bins accordin

average, experimental TF occupancy for the genes in a given bin plotted as a fun

the genes in this bin. Correlation between the computed, average value of the mi

gene expression for TSS (D), UAS (E), and ORF (F) regions, respectively. The
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computed the free energy of nonspecific binding, as described previously.

Third, within each region of interest (TSS or UAS), we computed the differ-

ence between the minima of the average free energy of nonspecific binding,

hDf imin, for the corresponding pairs of groups. Finally, we computed the

probability that this difference is equal or larger than the actual value of

the difference. The latter probability was taken as the p-value.
ORF
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binning is performed as explained previously.



Nonspecific Protein-DNA Binding in Yeast 1885
Fig. 3 A: To compute the p-value, we first compiled 3 � 105 pairs

of groups of randomly chosen 178 and 40 genes, respectively. These

groups represent the randomized analogs for TFIID and SAGA

genes, respectively. Second, for each of these pairs of random groups

we computed the average free energies, hDf i, of nonspecific binding

separately for randomized TFIID and randomized SAGA groups, as

described previously. Third, for each pair of randomized groups we

computed the difference of the integrated free energy within the interval

(�384,100) between randomized TFIID and SAGA groups. Finally, we

computed the probability that this difference is equal or larger than the

actual value of the difference. The latter probability was taken as the

p-value.
RESULTS

Model free energy of nonspecific TF-DNA binding

We begin by computing the free energy of nonspecific
TF-DNA binding in three genomic locations surrounding
the transcription start sites of 4962 highly confident yeast
transcripts (Materials and Methods). We use the following
terms, adopted from (1), to describe these three types of
locations: transcription start sites (TSSs) located in the
interval (�90,�30), upstream activating sequences (UASs)
located in the interval (�320,�260), and open reading
frames (ORFs) located in the 30 end of the coding regions
of genes (Materials and Methods). The occupancy of 202
transcription regulators (we use the term, TFs, to describe
the regulators) were experimentally determined in these
three locations in (1). We note that we use a conventional
abbreviation, TSS, to describe both the transcription start
site, where zero of our coordinate system is positioned in
each gene, and the region in the upstream vicinity of the
TSS site, located in the interval (�90,�30), as defined in
(1). This coincidence should not lead to confusion, because
the precise meaning of TSS will be clear from the context in
each case.

To compute the free energy of nonspecific TF-
DNA binding in each genomic location specified pre-
viously, we use a simple variant of the Berg-von Hippel
model (14,15), developed recently (25,26). In particular,
we can assign the free energy of nonspecific TF-DNA
binding to each DNA basepair along the genome in the
following way. First, we position a midpoint of the slid-
ing window of width L ¼ 50 bp at a given genomic
coordinate.

Second, we compute the partition function of the model
TF sliding along the sliding window:

Z ¼
XL

i¼ 1

exp

��UðiÞ
kBT

�
; (1)

where KB is the Boltzmann constant, T is the temperature,

and U(i) is the TF-DNA binding energy at the position i
within the sliding window. The TF-DNA binding energy
of the TF formingM contacts with DNA basepairs, at a given
position i within the sliding window:
UðiÞ ¼ �
XMþi�1

j¼ i

X4

a¼ 1

KasaðjÞ; (2)

where saðjÞ is a four-component vector of the type
ðdaA; daT ; daC; daGÞ, specifying the identity of the basepair
at each DNA position j, with dab ¼ 1, if a ¼ b, and
dab ¼ 0, if asb. For example, if a given DNA site, j, is
occupied by the A nucleotide, this vector takes the form:
(1,0,0,0); if the site j is occupied by the C nucleotide, this
vector is (0,0,1,0). Within the framework of our model,
each TF is fully described by four energy parameters, KA,
KT, KC, and KG (25). To model nonspecific TF-DNA
binding, we generate an ensemble of 250 TFs, and for
each TF we draw the energies KA, KT, KC, and KG from
the Gaussian probability distributions, PðKaÞ, with zero
mean and standard deviations, sa ¼ 2 kBT, where a ¼ A,
T, C, G. Therefore, each random realization of PðKaÞ
describes one TF.

Third, we compute the free energy of nonspecific TF-
DNA binding, F ¼ �kBTlnZ, for each randomly generated
TF in this sliding window. We always consider the differ-
ence, DF ¼ F� FN, where FN is the free energy computed
for a randomized sequence of the same width, L, and aver-
aged over 50 random realizations of this sequence, for a
given TF. This normalization procedure removes the effect
of the compositional bias, and allows us to compare the
free energies of nonspecific TF-DNA binding in different
genomic regions, despite the variation of the average nucle-
otide composition along the genome. We perform this calcu-
lation for all 250 randomly generated TFs. We note that the
results are very weakly dependent of the sliding window
width, L (data not shown).

Fourth, we move the sliding window along the genome,
assigning the free energy of nonspecific TF-DNA binding
for each randomly generated TF, to each genomic coordi-
nate in steps of 4 bp, within the three regions described
previously: TSSs, UASs, and ORFs, respectively. This
procedure allows us to perform a direct comparison of the
TF occupancy in these genomic regions between the model
and experiment (1).
Nonspecific binding significantly influences
experimentally observed TF-DNA binding
preferences

We now seek to answer the question to what extent does
nonspecific TF-DNA binding influence experimentally
observed TF binding preferences within the TSS, UAS,
and ORF regions, respectively? To answer this question,
we first select 10% highest and 10% lowest average TF occu-
pancy genes (see Materials and Methods for the definition of
the experimentally measured, average TF occupancy). We
perform such selection separately with respect to TF occu-
pancy in the TSS, UAS, and ORF regions, respectively.
Biophysical Journal 102(8) 1881–1888
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Next, we compute the profile of nonspecific TF-DNA
binding free energy, within the range (�384,384), for the
highest and the lowest TF occupancy genes, selected in
both the TSS regions, Fig. 1 A, and UAS regions, Fig. 1 B.
For each gene, we compute the free energy (normalized per
bp), averaged with respect to 250 model TFs, Df ¼
hDFiTF=M. After that, we compute the average of Df with
respect to the selected 10% highest and 10% lowest average
TF occupancy genes, aligned with respect to their transcrip-
tion start sites, hDf i ¼ hhDFiTFiseq=M, where the second
average, h.iseq, describes the averaging with respect to
the aligned sequences. In both the TSS and UAS regions
we observe that the highest TF occupancy genes exhibit
a lower free energy of nonspecific TF-DNA binding
compared with the lowest TF occupancy genes that exhibit
a higher free energy. This result is statistically significant
with the p-values, p x 0.01 and p x 0.007, for the TSS
and UAS regions, respectively (Materials and Methods). A
different definition of the average TF occupancy leads to
similar results, Fig. S1 in the Supporting Material.

The free energy of nonspecific TF-DNA binding signifi-
cantly correlates with the experimentally observed average
TF occupancy within the entire dynamic range of the occu-
pancy values in both TSS and UAS regions, Fig. 1, C and D.
Here, we ordered genes in bins with respect to the value of
their average TF occupancy, and computed the minimal free
energy, min(Df), for each sequence, in each bin. It is remark-
able that in both TSS and UAS regions the linear fits exhibit
identical slopes, Fig. 1, C and D. We conclude therefore that
nonspecific TF-DNA binding significantly influences
binding preferences in promoter regions of the majority of
transcription regulators in yeast.

We note that theoretical analysis of the nonspecific TF-
DNA binding free energy in the ORF regions does not
show statistically significant correlation with the experi-
mentally measured average TF occupancy in these regions,
unlike the trend described previously in the TSS and UAS
regions (data not shown). Overall, the magnitude of the
nonspecific TF-DNA binding free energy in the ORFs
regions is weak compared to the TSS and UAS regions, as
Fig. 1 clearly demonstrates.

We now demonstrate that the experimentally measured
cumulative TF occupancy in the promoter regions as
compared to coding regions (1) is also accurately predicted
within the framework of our model. In particular, to define
the cumulative TF occupancy theoretically, we assume in
the computational procedure that if the minimal binding
free energy, min(Df), of a given TF within a given genomic
region for a particular gene is less than a certain cutoff
value, then it binds to this region. Fig. 2, A and B, show
the result of such comparison for promoter regions
(combined binding to TSSs and UASs) and coding regions
(ORFs), based on the theoretical calculation (Fig. 2 A) and
experimental measurements (Fig. 2 B). These results are
highly statistically significant, as the biological error bars
Biophysical Journal 102(8) 1881–1888
demonstrate, Fig. 2, A and B. The agreement between the
theory and experiment holds quantitatively significant for
a wide, physically relevant range of the free energy cutoff
values (data not shown). Notably, when we compute the
cumulative TF occupancy, separating promoter regions
into TSSs and UASs, we observe a disagreement with the
experimental data for TSSs and UASs. In particular, our
model predicts that TSS regions possess a higher propensity
for nonspecific TF-DNA binding than UAS regions,
whereas the experimental data show an opposite trend.
The reason for this disagreement is currently not under-
stood. At least two additional factors may be responsible
for the observed discrepancy. First, as we mentioned in
the Introduction, several types of interactions determine
the measured TF occupancy in vivo (1). These are i), direct
binding to the local DNA; ii), cooperative binding to a
combination of local DNA and other locally bound TFs;
iii), cooperative binding only to other locally bound TFs
and not to DNA; and iv), binding to nascent RNA transcripts
and/or proteins bound to nascent RNA transcripts. Our
current model takes into account only mechanism (i).
Second, our theoretical approach is purely equilibrium,
whereas kinetic barriers might significantly influence TF
binding preferences in vivo (17).

We conclude, therefore, that nonspecific TF-DNA binding
alone can accurately account for the experimentally observed
differences in the cumulative TF occupancy of promoter
regions as compared with coding regions, yet our model fails
to predict the experimentally measured, absolute differences
between TSSs and UASs within the promoter regions (1).
DISCUSSION AND CONCLUSION

Nonspecific binding distinguishes between
SAGA-dominated and TFIID-dominated genes

Genome-wide studies found that ~90% of the yeast genome
is TFIID dominated, whereas the remaining ~10% of genes
are SAGA dominated (1,29,32). SAGA-dominated genes
typically contain the TATA box, and they are highly
regulated compared to TFIID-dominated genes, which are
typically TATA-less (29,32). The majority of the known
stress-response genes in yeast tend to belong to the
SAGA-dominated class (28,32). It is also known that the
high transcriptional plasticity genes are enriched in
SAGA-dominated genes compared to the low transcrip-
tional plasticity genes (30,31). It was concluded in a recent
study by Venters et al. (1) that SAGA-dominated/TATA-
containing genes were occupied by a larger variety of regu-
lators compared to TFIID-dominated/TATA-less genes.
Here, we show that the nonspecific TF-DNA binding free
energy can qualitatively explain the observed difference in
the TF occupancy between these two classes of genes.

In particular, we computed the profile of nonspecific
TF-DNA binding free energy for 40 highly confident
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SAGA-dominated (TATA-containing) genes, and 178
TFIID-dominated (TATA-less, nonribosomal protein)
genes, respectively (1). The key conclusion here is that
SAGA-dominated genes exhibit a wider region of the
reduced free energy (within the interval (�384,384) around
the TSS site) compared to TFIID-dominated genes, Fig. 3 A,
with the p-value, p x 4.4 � 10�4. We suggest, therefore,
that the reduced free energy of nonspecific TF-DNA binding
plays the role of an effective, attractive potential that
facilitates nonspecific binding to promoters of both
SAGA-dominated and TFIID-dominated genes, however,
the predicted effect is stronger for the former group, leading
to a higher average TF occupancy of SAGA-dominated
genes. To test the functional robustness of our conclusion,
we selected two larger groups of 15%highest and 15% lowest
transcriptional plasticity genes, respectively (732 genes in
each group) (30,31) (Materials and Methods). The high-
plasticity genes are enriched in SAGA-dominated genes
(272 SAGA genes out of 723 high-plasticity genes)
compared to the low-plasticity genes (3 SAGA genes out of
732 low-plasticity genes), with p < 10�6. The free energy
calculation performed for these two groups shows that the
high-plasticity genes possess a wider region of the reduced
free energy compared to the low-plasticity genes, Fig. 3 B.
Therefore, we conclude quite generally that nonspecific
TF-DNA binding significantly influences functional pro-
perties of yeast genes, and presumably, it facilitates the
search of specific TF binding sites in promoter regions.
Promoters of highly regulated genes appear to possess a
wider region of the reduced nonspecific TF-DNA binding
free energy (on average), compared to weakly regulated
genes.
Gene expression is correlated with nonspecific
TF-DNA free energy landscape

We ask now the question: How is the gene expression in yeast
influenced by nonspecific TF-DNA binding? To answer this
question, first, for each gene we computed the average free
energy profile, Df ¼ hDFiTF=M, in the promoter region
within the interval (�150,0). Second, for each genewe found
the minimum ofDfwithin this interval,Dfmin ¼ minðDf Þ. As
a result, we observe a statistically significant correlation of
Dfmin with the level of gene expression (28), Fig. 4 A. This
result suggests that nonspecific TF-DNA binding influences
gene expression in yeast. To obtain a deeper insight into
a relationship between nonspecific TF-DNA binding and
gene expression, we introduce the notion of nonspecific tran-
scription factor binding nucleotides (TFBNs). In particular,
we define a given position within the genome as being the
nonspecific TFBN, if the computed average free energy of
nonspecific TF-DNA binding in this genomic location is
less than a certain cutoff value. The correlation between
the number of nonspecific TFBNs within the interval
(-150,0) and the gene expression level is shown in
Fig. 4 B. Statistically significant correlation persists for
a wide range of the cutoff values (data not shown). To under-
stand how specific and nonspecific TF-DNA binding is
related, as far as gene expression is concerned, we also
present the correlation between the number of specific
TFBSs and the level of gene expression, Fig. 4, C and D,
where the information about specific TFBSs is extracted
from (33). We conclude, therefore, that first, the propensity
of promoter regions toward nonspecific TF binding statisti-
cally significantly influences gene expression, and second,
specific and nonspecific binding are functionally linked.

Next, we seek to understand whether the obtained rela-
tionship between nonspecific TF-DNA binding within the
interval (-150,0) and the level of gene expression persists
within the TSS, UAS, and ORF regions, respectively. To
answer this question, we first present the correlation
between the experimentally measured average TF occu-
pancy in each region and the level of gene expression,
Fig. 5, A, B, and C. Remarkably, a statistically significant
correlation is observed in all three regions. Fig. 5, D, E,
and F, present the correlation between the computed
minimal free energy of nonspecific binding and the level
of gene expression, within each region, TSS, UAS, and
ORF, respectively. The strongest correlation is observed
for the TSS regions, the correlation in the UAS regions is
also significant, but contrary to experimental results, we
do not observe correlation between Dfmin and the level of
gene expression in the ORF regions, Fig. 5 F. We conclude,
therefore, that in yeast, the strength of nonspecific TF-DNA
binding is encoded and fine-tuned within a wide interval (of
~300 bp) in promoter regions, and it influences the level of
gene expression. Our results suggest that in the coding
regions the effect of nonspecific TF-DNA binding on gene
expression is insignificant, and it is likely that other factors,
such as specific ATP-dependent chromatin modifying
factors, might play a dominant role there.
CONCLUSION

In summary, we first showed that nonspecific TF-DNA
binding significantly influences binding preferences of
~200 transcription regulators in promoter regions of the
yeast genome. Second, our analysis suggests that specific
and nonspecific binding are functionally linked. Third, we
observed quite generally, that promoter regions of highly
regulated genes, such as SAGA-dominated genes, possess
a wider region of the reduced nonspecific binding free
energy compared to promoter regions of weakly regulated
genes, such as TFIID-dominated genes. This qualitatively
explains the experimental observation in (1) that promoters
of SAGA-dominated genes are more highly occupied (on
average) than promoters of TFIID-dominated genes. Fourth,
we showed that the landscape of nonspecific binding free
energy in promoter regions correlates with the level of
gene expression.
Biophysical Journal 102(8) 1881–1888
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We emphasize that to compute the nonspecific TF-DNA
binding free energy genome-wide; we used a highly simpli-
fied biophysical model. Despite the simplicity of this model,
we suggest that our conclusions are quite general, and most
likely they represent the statistical rule, rather than the
exception. The generality of our conclusions stems from
the fact that the computed, location-dependent affinity of
the genome for nonspecific TF-DNA binding is dominated
exclusively by the symmetry of DNA sequence correlations,
and this affinity is expected to be weakly dependent of
microscopic details of the model.
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