33 research outputs found

    Surgeon-Performed Ultrasound as Preoperative Localization Study in Patients with Primary Hyperparathyroidism

    Get PDF
    Background: Minimally invasive parathyroidectomy is the treatment of choice for single-gland primary hyperparathyroidism. However, the exact location of the abnormal gland has to be established. Sestamibi scintigraphy, computed tomography and ultrasound (US) are commonly used modalities. We describe our experience in a non-academic center with surgeon-performed US (S-US) of the neck as preoperative localization study in patients with primary hyperparathyroidism (PHPT). Methods: Patients with a biochemically proven diagnosis of PHPT and preoperative S-US were included. Data were recorded prospectively. Perioperative gland location was compared to the preoperative S-US to determine sensitivity, specificity and accuracy rates. Results: Two of the 50 patients who underwent S-US were not subjected to surgery. In 85% of the patients analyzed by S-US, the appropriate abnormal gland(s) were identified. In 11%, no gland was identified, but abnormal glands were found during surgery. Sensitivity of S-US in our hospital is 85%, with a positive predictive value of 97%. Conclusions: We achieved a satisfactory sensitivity rate. S-US provides anatomic information to the surgeon which enables a more detailed operation planning, and it is a valuable diagnostic modality for patients with PHPT in our opinion. We hope that our data encourage other centers to implement this technique as well. Copyrigh

    Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways

    Get PDF
    Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.National Institute on Aging (AG16636
    corecore