554 research outputs found
Practical guidance for applying the ADNEX model from the IOTA group to discriminate between different subtypes of adnexal tumors.
All gynecologists are faced with ovarian tumors on a regular basis, and the accurate preoperative diagnosis of these masses is important because appropriate management depends on the type of tumor. Recently, the International Ovarian Tumor Analysis (IOTA) consortium published the Assessment of Different NEoplasias in the adneXa (ADNEX) model, the first risk model that differentiates between benign and four types of malignant ovarian tumors: borderline, stage I cancer, stage II-IV cancer, and secondary metastatic cancer. This approach is novel compared to existing tools that only differentiate between benign and malignant tumors, and therefore questions may arise on how ADNEX can be used in clinical practice. In the present paper, we first provide an in-depth discussion about the predictors used in ADNEX and the ability for risk prediction with different tumor histologies. Furthermore, we formulate suggestions about the selection and interpretation of risk cut-offs for patient stratification and choice of appropriate clinical management. This is illustrated with a few example patients. We cannot propose a generally applicable algorithm with fixed cut-offs, because (as with any risk model) this depends on the specific clinical setting in which the model will be used. Nevertheless, this paper provides a guidance on how the ADNEX model may be adopted into clinical practice
Determinants of soil organic matter chemistry in maritime temperate forest ecosystems
While the influence of climate, vegetation, management and abiotic site factors on total carbon budgets and turn-over is intensively assessed, the influences of these ecosystem properties on the chemical complexity of soil organic matter (SOM) remains poorly understood. This study addresses the chemical composition of NaOH-extracted SOM from maritime temperate forest sites in Flanders (Belgium) by pyrolysis-GC/MS. The studied forests were chosen based on dominant tree species (Pinus sylvestris, Fagus sylvatica, Quercus robur and Populus spp.), soil texture and soil-moisture conditions. Differences in extractable-SOM pyrolysis products were correlated to site variables including dominant tree species, management of the woody biomass, site history, soil properties, total carbon stocks and indicators for microbial activity. Despite of a typical high intercorrelation between these site variables, the influence of the dominant tree species is prominent. The extractable-SOM composition is strongly correlated to litter quality and available nutrients. In nutrient-poor forests with low litter quality, the decomposition of relatively recalcitrant compounds (i.e. short and mid-chain alkanes/alkenes and aromatic compounds) appears hampered, causing a relative accumulation of these compounds in the soil. However, if substrate quality is favorable, no accumulations of recalcitrant compounds were observed, not even under high soil-moisture conditions. Former heathland vegetation still had a profound influence on extractable-SOM chemistry of young pine forests after a minimum of 60 year
Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests
Many decisions in medicine involve trade-offs, such as between diagnosing patients with disease versus unnecessary additional testing for those who are healthy. Net benefit is an increasingly reported decision analytic measure that puts benefits and harms on the same scale. This is achieved by specifying an exchange rate, a clinical judgment of the relative value of benefits (such as detecting a cancer) and harms (such as unnecessary biopsy) associated with models, markers, and tests. The exchange rate can be derived by asking simple questions, such as the maximum number of patients a doctor would recommend for biopsy to find one cancer. As the answers to these sorts of questions are subjective, it is possible to plot net benefit for a range of reasonable exchange rates in a "decision curve." For clinical prediction models, the exchange rate is related to the probability threshold to determine whether a patient is classified as being positive or negative for a disease. Net benefit is useful for determining whether basing clinical decisions on a model, marker, or test would do more good than harm. This is in contrast to traditional measures such as sensitivity, specificity, or area under the curve, which are statistical abstractions not directly informative about clinical value. Recent years have seen an increase in practical applications of net benefit analysis to research data. This is a welcome development, since decision analytic techniques are of particular value when the purpose of a model, marker, or test is to help doctors make better clinical decisions
Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study
Background: To compare different ultrasound-based international ovarian tumour analysis (IOTA) strategies and risk of malignancy index (RMI) for ovarian cancer diagnosis using a meta-analysis approach of centre-specific data from IOTA3. Methods: This prospective multicentre diagnostic accuracy study included 2403 patients with 1423 benign and 980 malignant adnexal masses from 2009 until 2012. All patients underwent standardised transvaginal ultrasonography. Test performance of RMI, subjective assessment (SA) of ultrasound findings, two IOTA risk models (LR1 and LR2), and strategies involving combinations of IOTA simple rules (SRs), simple descriptors (SDs) and LR2 with and without SA was estimated using a meta-analysis approach. Reference standard was histology after surgery. Results: The areas under the receiver operator characteristic curves of LR1, LR2, SA and RMI were 0.930 (0.917–0.942), 0.918 (0.905–0.930), 0.914 (0.886–0.936) and 0.875 (0.853–0.894). Diagnostic one-step and two-step strategies using LR1, LR2, SR and SD achieved summary estimates for sensitivity 90–96%, specificity 74–79% and diagnostic odds ratio (DOR) 32.8–50.5. Adding SA when IOTA methods yielded equivocal results improved performance (DOR 57.6–75.7). Risk of Malignancy Index had sensitivity 67%, specificity 91% and DOR 17.5. Conclusions: This study shows all IOTA strategies had excellent diagnostic performance in comparison with RMI. The IOTA strategy chosen may be determined by clinical preference
Managing pregnancy of unknown location based on initial serum progesterone and serial serum hCG: development and validation of a two-step triage protocol.
A uniform rationalized management protocol for pregnancies of unknown location (PUL) is lacking. We developed a two-step triage protocol based on presenting serum progesterone (step 1) and hCG ratio two days later (step 2) to select PUL at high-risk of ectopic pregnancy (EP).Cohort study of 2753 PUL (301 EP), involving a secondary analysis of prospectively and consecutively collected PUL at two London-based university teaching hospitals. Using a chronological split we used 1449 PUL for development and 1304 for validation. We aimed to select PUL as low-risk with high confidence (high negative predictive value, NPV) while classifying most EP as high-risk (high sensitivity). The first triage step selects low-risk PUL at presentation using a serum progesterone threshold. The remaining PUL are triaged using a novel logistic regression risk model based on hCG ratio and initial serum progesterone (second step), defining low-risk as an estimated EP risk <5%.On validation, initial serum progesterone ≤2nmol/l (step 1) selected 16.1% PUL as low-risk. Second step classification with the risk model M6P selected an additional 46.0% of all PUL as low-risk. Overall, the two-step protocol classified 62.1% of PUL as low-risk, with an NPV of 98.6% and a sensitivity of 92.0%. When the risk model was used in isolation (i.e. without the first step), 60.5% of PUL were classified as low-risk with 99.1% NPV and 94.9% sensitivity.The two-step protocol can efficiently classify PUL into being at high or low risk of complications
Self-reported symptoms of depressed mood, trait anxiety and aggressive behavior in post-pubertal adolescents:associations with diurnal cortisol profiles
Predicting the risk of malignancy in adnexal masses based on the Simple Rules from the International Ovarian Tumor Analysis group
BACKGROUND: Accurate methods to preoperatively characterize adnexal tumors are pivotal for optimal patient management. A recent metaanalysis concluded that the International Ovarian Tumor Analysis algorithms such as the Simple Rules are the best approaches to preoperatively classify adnexal masses as benign or malignant. OBJECTIVE: We sought to develop and validate a model to predict the risk of malignancy in adnexal masses using the ultrasound features in the Simple Rules. STUDY DESIGN: This was an international cross-sectional cohort study involving 22 oncology centers, referral centers for ultrasonography, and general hospitals. We included consecutive patients with an adnexal tumor who underwent a standardized transvaginal ultrasound examination and were selected for surgery. Data on 5020 patients were recorded in 3 phases from 2002 through 2012. The 5 Simple Rules features indicative of a benign tumor (B-features) and the 5 features indicative of malignancy (M-features) are based on the presence of ascites, tumor morphology, and degree of vascularity at ultrasonography. Gold standard was the histopathologic diagnosis of the adnexal mass (pathologist blinded to ultrasound findings). Logistic regression analysis was used to estimate the risk of malignancy based on the 10 ultrasound features and type of center. The diagnostic performance was evaluated by area under the receiver operating characteristic curve, sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), positive predictive value (PPV), negative predictive value (NPV), and calibration curves. RESULTS: Data on 4848 patients were analyzed. The malignancy rate was 43% (1402/3263) in oncology centers and 17% (263/1585) in other centers. The area under the receiver operating characteristic curve on validation data was very similar in oncology centers (0.917; 95% confidence interval, 0.901-0.931) and other centers (0.916; 95% confidence interval, 0.873-0.945). Risk estimates showed good calibration. In all, 23% of patients in the validation data set had a very low estimated risk (<1%) and 48% had a high estimated risk (≥30%). For the 1% risk cutoff, sensitivity was 99.7%, specificity 33.7%, LR+ 1.5, LR- 0.010, PPV 44.8%, and NPV 98.9%. For the 30% risk cutoff, sensitivity was 89.0%, specificity 84.7%, LR+ 5.8, LR- 0.13, PPV 75.4%, and NPV 93.9%. CONCLUSION: Quantification of the risk of malignancy based on the Simple Rules has good diagnostic performance both in oncology centers and other centers. A simple classification based on these risk estimates may form the basis of a clinical management system. Patients with a high risk may benefit from surgery by a gynecological oncologist, while patients with a lower risk may be managed locally
Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence:A prospective study on the fetal origins of depressed moods
Screening for data clustering in multicenter studies: the residual intraclass correlation
status: publishe
- …
