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Abstract

Background: In multicenter studies, center-specific variations in measurements may arise for various reasons, such
as low interrater reliability, differences in equipment, deviations from the protocol, sociocultural characteristics, and
differences in patient populations due to e.g. local referral patterns. The aim of this research is to derive measures
for the degree of clustering. We present a method to detect heavily clustered variables and to identify physicians
with outlying measurements.

Methods: We use regression models with fixed effects to account for patient case-mix and a random cluster
intercept to study clustering by physicians. We propose to use the residual intraclass correlation (RICC), the
proportion of residual variance that is situated at the cluster level, to detect variables that are influenced by
clustering. An RICC of 0 indicates that the variance in the measurements is not due to variation between clusters.
We further suggest, where appropriate, to evaluate RICC in combination with R2, the proportion of variance that is
explained by the fixed effects. Variables with a high R2 may have benefits that outweigh the disadvantages of
clustering in terms of statistical analysis. We apply the proposed methods to a dataset collected for the
development of models for ovarian tumor diagnosis. We study the variability in 18 tumor characteristics collected
through ultrasound examination, 4 patient characteristics, and the serum marker CA-125 measured by 40 physicians
on 2407 patients.

Results: The RICC showed large variation between variables: from 2.2% for age to 25.1% for the amount of fluid in
the pouch of Douglas. Seven variables had an RICC above 15%, indicating that a considerable part of the variance
is due to systematic differences at the physician level, rather than random differences at the patient level.
Accounting for differences in ultrasound machine quality reduced the RICC for a number of blood flow
measurements.

Conclusions: We recommend that the degree of data clustering is addressed during the monitoring and analysis
of multicenter studies. The RICC is a useful tool that expresses the degree of clustering as a percentage. Specific
applications are data quality monitoring and variable screening prior to the development of a prediction model.
Background
In clinical research, multicenter consortia are rapidly
gaining popularity. Recruiting patients from a broad
range of settings yields a representative sample, and sim-
ultaneously patient recruitment times can be reduced
[1,2]. This is especially appealing when studying rare dis-
eases. A complication that arises from multicenter data
collection is data clustering: two patients from the same
center have more similarities than two patients from
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different centers. Most of the common statistical analysis
techniques assume independent data. This assumption is
violated in clustered data. As a consequence, studies
may be underpowered. Estimates of standard errors can
be incorrect, and hence the type-I error rate is too. Con-
fidence intervals will often be too narrow. Furthermore,
regression estimates may be biased due to confounding
of covariates with center, or diluted due to lack of agree-
ment in measurements by different physicians. If clus-
tering is not accounted for during analysis, research
conclusions can be misleading [3].
We believe that in many studies it is useful to investi-

gate clustering in detail in order to detect problems or
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understand the data structure. Important causes of clus-
tering are non-random differences in the measurements
taken by different physicians recruiting in the contribu-
ting centers. Intraclass correlations (ICC) have tradition-
ally been used to study interrater reliability. The ICC is
commonly defined as the correlation between two quan-
titative measurements made by different judges or raters
for the same measurement object [4,5]. However, in the
context of multicenter studies, it has some drawbacks.
First, it requires at least two raters measuring variables
for the same patient. Since most multicenter studies are
not designed for studying interrater reliability, this
would require additional efforts when designing the
study and collecting the data. It is often impractical and
cost-intensive to have physicians from different centers
examining the same patients. Second, interrater relia-
bility studies do not uncover all relevant forms of data
clustering in multicenter studies. Besides subjectivity of
measurements, there are various other reasons for non-
random differences across physicians. Differences in
equipment or equipment settings may give rise to clus-
tering, as well as deviations from the study protocol.
Regional differences across centers may cause data clus-
tering via sociocultural characteristics of patients or pro-
cedures. It is for example well documented that the
perception and expression of pain is related to ethnicity
[6]. Non-random differences in measurements across
physicians may also occur because of differences in their
patient populations due to e.g. local referral patterns.
An alternative formulation of the ICC does not require

measurements by multiple physicians for the same pa-
tient. Instead, it requires the assessment of multiple pa-
tients per physician, which is more in line with typical
data collection in multicenter studies. In this set-up, the
ICC is defined as the correlation between any two mea-
surements made by the same physician, or equivalently
the amount of variance in the measurements that is lo-
cated at the level of the physician. As a consequence, it
is able to detect various forms of data clustering. Hence,
it can be used for data quality control, as recently dem-
onstrated by Guthrie et al. [7], or as a screening step be-
fore selecting variables to develop a prediction model. A
drawback of this formulation of the ICC is that it does
not acknowledge that physicians may systematically re-
cord lower or higher measurements because of different
patient populations.
In this work we present mixed effects models to study

clustering while simultaneously taking case-mix diffe-
rences across physicians into account. We use the re-
sidual intraclass correlation (RICC), an extension of the
ICC, to quantify the degree of clustering. We also relate
the RICC to the proportion of explained variance by par-
titioning the total variance into error variance at the pa-
tient and physician level, and explained variance. We
demonstrate these concepts on a multicenter dataset
collected for the development and validation of a predic-
tion model for preoperative ovarian and tubal tumor
diagnosis.

Methods
A mixed effects model
Suppose a variable Zij was measured in N patients by J
physicians (clusters), i = 1,…, N and j = 1,…, J. Zij could
be, for example, tumor size or a score to quantify blood
flow. To account for data clustering, we consider a
mixed effects model of Zij by incorporating a random
intercept aj. This recognizes that the average mea-
sured value may systematically vary from physician to
physician:

Zij ¼ αþ aj þ eij

aj e Nð0; τ2interceptÞ
eij e N 0; σ2

error

� �
:

ð1Þ

The random intercept at the physician level and the
random error term at the patient level are assumed to
have a normal distribution with mean zero and variance
τ2intercept ¼ var aj

� �
and σ2error , respectively. When Zij is a

nominal or ordinal variable, model (1) can easily be refor-
mulated as a generalized linear mixed model. Throughout
this research, we use the logit link function in logistic
regression models for dichotomous variables and pro-
portional odds models for ordinal variables. Conse-
quently, the error terms have a logistic distribution

with σ2error ¼ π2
.

3
≈3:29 [8].

The intraclass correlation coefficient
The crude amount of clustering in Zij can be expressed
as the proportion of variance at the cluster level. The
total variance in Zij can be split up into the variance at
the patient level ( σ2error ) and variance at the physician
level (τ2intercept ). The intraclass correlation (ICC) is de-

fined as

ICC ¼ τ2intercept
τ2intercept þ σ2error

: ð2Þ

The patient populations (case-mix) often vary between
clusters. In this case a more refined metric is required,
as described below.

Patient case-mix
Patient case-mix can account for a substantial part of
the between-physician variance. For example, in a diag-
nostic accuracy study the prevalence of the disease



Wynants et al. BMC Medical Research Methodology 2013, 13:128 Page 3 of 11
http://www.biomedcentral.com/1471-2288/13/128
under study may differ across physicians. In that case,
the true disease status of patient i seen by physician j
can be included as an explanatory variable in the model
of Zij (1):

Zij ¼ αþ aj þ β� diseaseij þ eij

aj e N 0; τ2intercept
� �

eij e N 0; σ2error
� �

:

ð3Þ

The true disease status will usually be represented by a
dummy variable indicating presence or absence of the
disease, although an extension to multiple dummies to
describe the true disease status in more than two cate-
gories is straightforward. In what follows, we use disease
as the case-mix factor, although in other applications dif-
ferent variables may be more relevant.
Additional explanatory patient-level factors can be

added to the model if necessary. Patient-level variables
that are related to Zij and have unequal distributions
across clusters potentially explain clustering, and are
thus most relevant to include. Patient-level factors influ-
encing Zij other than the factors included in the model
for Zij are regarded as disturbances captured by the error
term.

The residual intraclass correlation coefficient
The total variance of Zij can now be split up into a part
that is accounted for by the explanatory variables (σ2LP ),
an unexplained part at the patient level (σ2error ) and an
unexplained part at the physician level (τ2intercept ). σ

2
LP is

the variance of the linear predictor, excluding the ran-
dom intercepts. In model (3) this is var(β × diseaseij). R

2

is the proportion of variance in Zij accounted for by the
explanatory variables:

R2 ¼ σ2LP
σ2LP þ τ2intercept þ σ2error

: ð4Þ

A higher R2 indicates that the variable is less influ-
enced by disturbances at the physician and patient level.
The proportion of total variance at the physician level is
labelled as the ‘variance partitioning coefficient’ (VPC):

VPC ¼ τ2intercept
σ2LP þ τ2intercept þ σ2error

: ð5Þ

Theoretically VPC can take values between 0 and 1,
but 1 will only be reached if there is no residual variance
at the patient level (σ2error ¼ 0), and the explanatory vari-
ables have the same value for all patients or all have re-
gression coefficients of zero (σ2LP ¼ 0). The sum of the
R2, the VPC and the proportion unexplained variance at
the patient level equals one. Since its magnitude depends
on σ2
LP , the VPC is difficult to interpret as a measure of

the degree of clustering.
The residual intraclass correlation (RICC) is the re-

sidual correlation in the measurements between any two
patients seen by the same physician, after the effects of
the explanatory variables have been taken into account
[8]. Equivalently, it is the proportion of the residual vari-
ance situated at the physician level:

RICC ¼ τ2intercept
τ2intercept þ σ2error

: ð6Þ

Note that σ2LP is not part of the denominator. The
RICC reaches a maximum value of 1 when all of the
variance in Zij that is not explained by the explanatory
variables, is situated at the physician level. If the residual
variance is only situated at the level of the patient, the
RICC reaches a minimum value of 0, and there are no
between-physician differences. This makes the RICC a
pure measure of clustering and an easy to interpret
screening tool. However, it may be useful in certain ap-
plications to include R2 in the evaluation of the RICC
and in the subsequent decision to investigate the cause
of clustering or to exclude variables from further ana-
lysis. Variables with a high proportion of explained
variance (R2) may have benefits that outweigh the dis-
advantages of clustering.

Elaborating the mixed effects model
An often overlooked assumption underlying a mixed
model is that random terms should be uncorrelated with
explanatory variables [3,8]. It is unlikely that this as-
sumption always holds in multicenter studies. For ex-
ample, when we are interested in clustering of patients
with a history of cancer within physicians, the variable
‘history of cancer’ is the dependent variable (Zij) in
model (3) above. Physicians specialized in cancer treat-
ment may regularly encounter patients with a history of
cancer, a risk factor for tumor malignancy when the pa-
tient presents with a new mass. Therefore, they will have
high random intercepts (aj) compared to other phy-
sicians. At the same time these physicians may also
encounter malignant tumors more often than other phy-
sicians. Complex referral patterns exist in clinical prac-
tice, which may cause patients with suspected recurrent
cancers and other highly suspicious masses to be re-
ferred to specialized physicians. Hence, there is a correl-
ation between the random intercept and the tumor type.
If we include tumor type to account for differences in
patient case-mix (diseaseij), the regression coefficient for
this variable (β) is a joint estimate reflecting not only the
association of cancer history with tumor type, but also
the association of the prevalence of patients with a can-
cer history with the prevalence of malignant tumors at
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the cluster level [8]. These between- and within phy-
sician associations cannot be separated, which is prob-
lematic since they can differ in strength and even have
opposite signs.
The solution is to add physician-level information on

their patients’ true disease status to the model, in order
to obtain an unbiased estimate of the within-physician
effect of tumor type [8]. When the disease status is a di-
chotomous variable with categories indicating presence
or absence of the disease, this is simply the prevalence
of the disease for physician j. When disease status has k
categories, k-1 variables need to be constructed, each in-
dicating the prevalence of one of the categories for phy-
sician j. When disease status is a continuous variable,
the physician-specific average should be included. Model
(3) can be extended as follows:

Zij ¼ αþ aj þ β1 � disease prevalencej þ β2 � diseaseij þ eij

aj e N 0; τ2intercept
� �

eij e N 0; σ2error
� �

:

ð7Þ

The constant term for physician j now equals α�j ¼ αþ
aj þ β1 � disease prevalencej and model (7) can be re-
written as

Zij ¼ α�j þ β2 � diseaseij þ eij:

α�j e N �α�j ; τ
2
intercept

� �
eij e N 0; σ2error

� �
:

ð8Þ

�α�j ¼ αþ β1 �
�
disease prevalencej is the overall in-

tercept, around which the α�j vary with a variance

τ2intercept , which now equals var α�j
� �

¼ var aj
� �þ β21 � var

diseaseð prevalencejÞ þ 2β1 � cov aj; disease prevalencej
� �

:

Finally, analogous to the fact that patient information
can explain a part of the between-physician variance (cf.

var α�j
� �

), so can information at the physician level.

Therefore it is possible to include physician-level ex-
planatory variables, such as their workplace (e.g. regional
hospital or tertiary center):

Zij ¼ α�j þ β2 � diseaseij þ γ � physician characteristicj þ eij:

α�j e N �α�j ; τ
2
intercept

� �
eij e N 0; σ2

error

� �
:

ð9Þ

Note that the variance of the linear predictor, σ2LP , now
equals var(β2 × diseaseij + γ × physician _ characteristicj).
Estimation
In practice, the variance terms τ2intercept , σ2

error and

σ2LP can be estimated using any standard statistical
package that allows for the fitting of mixed effect
models. We have used SAS software (version 9.3,
SAS Institute, Cary, NC, USA) for all computations.
A SAS macro for the computation of the RICC,
based on the mixed and glimmix procedures, has been
included in (Additional file 1).
τ2intercept and σ2error can be estimated by first estimating

full model (7) to obtain β̂2 , and subsequently fitting a
random intercept model for Zij without explanatory

variables but with β̂2 � diseaseij as an offset variable. If
physician-level explanatory variables are included, full
model (9) including the physician-level fixed effect is
fitted. Subsequently a random intercept model for Zij is

fitted with β̂2 � diseaseij as an offset variable and the
physician-level effect as explanatory variable to re-
estimate γ. The resulting variance of the random inter-
cept is the estimated variance of the random intercepts
α�j , τ

2
intercept , while the residual variance is the estimated

variance of the error term, σ2
error . If Zij is a dichotomous

or ordinal variable and generalized linear models are
fitted using the logit transformation as a link func-
tion, the error terms have a logistic distribution with

σ2 ¼ π2
.

3
≈3:29 [8].

The estimation of σ2LP was chosen to correspond to
standard ways of computing R2 in linear and generalized
linear mixed models [8]. To obtain the explained vari-
ance for a continuous Zij, an empty random intercept
model, i.e. without fixed patient or physician level ex-
planatory variables, was fitted. The resulting estimated
variance at physician and patient level was added to-
gether to obtain an estimate of the total variance. The
explained variance (σ2LP ) can subsequently be estimated
by subtracting τ̂2intercept and σ̂ 2

error from the estimated

total variance. In the case of an ordinal or dichotomous
predictor, σ2

LP was computed directly from the data,
obtaining the linear predictor by multiplying the ex-
planatory variables with the regression coefficient esti-
mates from full model (7) or (9), as appropriate.

Confidence statements
90% bootstrap confidence intervals were computed using
the percentile method. Since data are clustered, boot-
strap resampling was performed at the physician level,
including all patients for each sampled physician [9].

Random intercept plots to identify outlying physicians
The random intercepts obtained when fitting model
(8) or (9) can be plotted to identify physicians with
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measurements for Zij that are unusually large or small,
given the explanatory variables and compared to measure-
ments by the average physician. Note that estimated ran-
dom intercepts are shrunken towards zero, and that
shrinkage increases as the number of patients seen by
physician j decreases. Comparative standard errors are
used to test whether the physician-specific random
intercept is significantly different from zero [10]. We
used the false discovery rate method to account for
multiple testing [11].

Data
We illustrate the described techniques on data from the
International Ovarian Tumor Analysis (IOTA) group
containing clinical and ultrasound information on 2407
patients with ovarian or tubal tumors, prospectively col-
lected between 2002 and 2007 by 40 physicians from 19
hospitals in 8 countries. The data was collected to de-
velop and validate clinical prediction models for the
diagnosis of ovarian and tubal tumors [12-16]. University
Hospitals Leuven is the coordinating center of the IOTA
studies. The study protocols for the collection of the
data were approved by the Ethics Committee of the Uni-
versity Hospitals Leuven (‘Commissie Medische Ethiek’)
and by the local Ethics Committee at each recruitment
center.
We focused on clustering at the physician level. Addi-

tional clustering of physicians in hospitals was not taken
into account during analysis because in 10 of the hospi-
tals data was collected by only 1 physician, whereas for
the other 9 hospitals there was 1 principal investigator
collecting the vast majority of the data. The RICC was
used to study between-physician variance for 18 var-
iables collected through an ultrasound examination, 4
patient characteristics and the level of serum marker
CA125. To account for differences in case-mix, mixed
models were developed, with tumor histology (benign,
borderline, primary invasive or metastatic invasive) as
the explanatory variable. After patients obtained surgery,
all excised tissues were sampled for histological exa-
mination at the local center. Tumor histology was then
determined according to the World Health Organiza-
tion classification [17]. Ultrasound machine quality (high
end, medium end and low end machines) was included
in a second step as a physician-level characteristic to fur-
ther explain differences between physicians in ultra-
sound measurements. Discussions with clinical experts
were held to reveal to reveal the likely causes of the high
interphysician variability of certain measurements. Ad-
ditionally, a limited survey was conducted among physi-
cians with unusually high or low random intercepts for
highly clustered variables. The survey included questions
on the measurement or registration for each of these
variables.
Results
The median number of patients per physician is 9 (mean
60, IQR 2 to 82.5, range 1 to 509). 18 of 40 physicians
have seen less than 5 patients, while 16 have seen more
than 30. In total 72.1% of patients had a benign tumor,
while in 5.4% of patients the tumor was borderline, in
19.4% it was primary invasive and in 3.2% it was a meta-
static tumor in the ovary. However, among physicians
with more than 5 patients, the prevalence of benign,
borderline, invasive and metastatic tumors per physician
varied from 28.6 to 91.9%, 0 to 20.0%, 0 to 71.4% and 0
to 7.5%, respectively, indicating considerable case-mix
differences.
The RICC showed considerable variation between var-

iables (Table 1, Figure 1). Patient age had the lowest
level of clustering (RICC 2.2%, 90% CI 0.9-3.7%). Six
other variables had an RICC below 5% (number of loc-
ules, maximum diameter of the solid component, serum
CA-125, acoustic shadows, number of papillations, and
maximum lesion diameter). On the other hand, for the
amount of fluid in the pouch of Douglas, 25.1% (90% CI
6.7-32.1%) of the residual variance was due to between-
physician differences. For current use of hormonal the-
rapy this was 20.0% (90% CI 10.6-31.2%). Five other
variables had an RICC above 15% (personal history of
ovarian cancer, pelvic pain during examination, color
score of intratumoral blood flow, presence of papilla-
tions with detectable flow, and the resistance index). Of
these seven variables with an RICC above 15%, the
amount of variability accounted for by tumor type varies
from 1.5% (90% CI 0.9-9.4%) for pelvic pain and 2.6%
(90% CI 1.3-9.0%) for current use of hormonal therapy
to 30.4% (90% CI 25.6-41.2%) for presence of papilla-
tions with detectable flow and 30.9% (90% CI 24.9-
36.3%) for color score of intratumoral flow.
The VPC varied from 1.9% (90% CI 0.8% to 3.3%) for

patient age to 21.2% (90% CI 5.1% to 28.4%) for the
amount of fluid in the pouch of Douglas. VPC and RICC
were similar for most variables. However, when the
tumor type accounts for a large proportion of the total
variance (R2 is high), the VPC was by definition consid-
erably smaller than the RICC. For example, 12.6% of the
residual variance of the presence of metastases was due
to between-physician differences, but the VPC was only
5.3%: of the total variance in metastases 57.9% was
accounted for by tumor type.
Taking the ultrasound machine quality into account

yielded a considerable reduction in the RICC of Doppler
blood flow indices such as peak systolic velocity (reduc-
tion in RICC 4.0%, 90% CI -0.5% to 9.4%) and resistance
index (reduction in RICC 5.6%, 90% CI -1.3% to 19.2%)
(Table 2). The measurements of blood flow depend on
the quality of the ultrasound machine, with higher qua-
lity machines giving more sensitive measurements. The



Table 1 Variance partitioning of ultrasound measurements and patient characteristics
Variable n Coefficient of variation/Prevalence VPC R2 RICC

Patient age (years) 2407 0.4 1.9% 13.9% 2.2%

[0.8% to 3.3%] [10.6% to 17.4%] [0.9% to 3.7%]

Number of locules (ordinal) 1997c 0.8 2.6% 10.6% 2.9%

[0.5% to 4.4%] [6.7% to 14.2%] [0.6% to 4.9%]

Maximum diameter of the solid component
(mm, log transformed)

1160b 0.2 2.4% 22.4% 3.1%

[0.0% to 5.7%] [17.4% to 28.9%] [0.0% to 7.3%]

Serum CA125 (IU/L, log transformed) 1827a 0.4 2.0% 37.8% 3.3%

[0.8% to 4.3%] [32.8% to 41.7%] [1.3% to 6.8%]

Acoustic shadows (yes/no) 2407 13.7% 3.0% 14.2% 3.4%

[0.0% to 5.0%] [8.0% to 72.1%] [0.0% to 5.9%]

Number of papillations (ordinal) 468d 0.6 2.9% 15.7% 3.5%

[0.0% to 5.5%] [13.6% to 23.8%] [0.0% to 6.6%]

Maximum lesion diameter (mm, log transformed) 2406e 0.1 4.5% 9.2% 4.9%

[1.0% to 10.1%] [5.9% to 11.4%] [1.1% to 11.0%]

Presence of solid components (yes/no) 2407 48.2% 3.2% 43.5% 5.7%

[1.0% to 4.4%] [39.8% to 73.5%] [2.3% to 8.4%]

Bilateral (yes/no) 2407 16.6% 7.8% 6.1% 8.3%

[0.0% to 30.0%] [3.6% to 8.2%] [0.0% to 31.6%]

Ascites (yes/no) 2407 10.0% 4.9% 43.0% 8.5%

[0.0% to 9.5%] [34.5% to 49.3%] [0.0% to 15.8%]

Free fluid in pouch of Douglas (yes/no) 2407 25.4%. 8.3% 14.0% 9.6%

[2.2% to 13.3%] [11.1% to 17.5%] [2.6% to 15.2%]

Presence of papillations (yes/no) 2407 19.6% 8.7% 11% 9.8%

[3.7% to 12.9%] [7.4% to 14.9%] [4.1% to 14.8%]

Irregular internal wall (yes/no) 2407 38.5% 10.0% 13.8% 11.6%

[2.7% to 16.7%] [11.6% to 16.7%] [3.1% to 19.5%]

Peak systolic velocity (cm/s, log transformed) 1432g 0.3 11.2% 5.9% 11.9%

[5.3% to 16.3%] [2.4% to 10.8%] [6.0% to 16.9%]

Metastases (yes/no) 1457f 10.7% 5.3% 57.9% 12.6%

[0.2% to 8.4%] [52.9% to 95.3%] [1.3% to 21.1%]

Height of papillation (mm, log transformed) 468d 0.3 10.9% 16.7% 13.1%

[0.0% to 28.2%] [6.3% to 25.5%] [0.0% to 31.7%]

Resistance index 1432g 0.3 14.5% 8.4% 15.9%

[1.7% to 23.6%] [4.6% to 13.5%] [1.9% to 26.5%]

Papillations with detectable blood flow (yes/no) 468d 47.4% 11.3% 30.4% 16.2%

[2.8% to 17.1%] [25.6% to 41.2%] [4.4% to 23.8%]

Color score of intratumoral blood flow (ordinal) 2407 0.5 12.2% 30.9% 17.6%

[3.6% to 22.6%] [24.9% to 36.3%] [5.6% to 30.1%]

Pelvic pain during examination (yes/no) 2407 19.1% 18.6% 1.5% 18.9%

[6.6% to 26.5%] [0.9% to 9.4%] [9.8% to 27.1%]

Personal history of ovarian cancer (yes/no) 2407 1.6% 16.5% 13.1% 19.0%

[0.0% to 25.3%] [10.3% to 72.8%] [0.0% to 30.3%]

Current use of hormonal therapy (yes/no) 2407 12.7% 19.5% 2.6% 20.0%

[10.0% to 30.4%] [1.3% to 9.0%] [10.6% to 31.2%]

Amount of free fluid in pouch of Douglas
(mm, log transformed)

616h 0.3 21.2% 15.5% 25.1%

[5.1% to 28.4%] [9.8% to 21.7%] [6.7% to 32.1%]

Percentage of the total variance at the sonographer level (VPC) (% [90 CI]), percentage of the total variance explained by tumour type (R2) (% [90 CI]) and the
residual intraclass correlation (RICC) (% [90 CI]). aMeasurement of CA125 was not obligatory; bIf at least one solid component is present; cIf there is at least one
locul; dIn case of the presence of a papillary structure; eOne influential outlier removed (measurement error); fAssessment of presence of metastases was not
obligatory; gIf there is intratumoural blood flow; hIf there is fluid in the pouch of Douglas.
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Figure 1 Plot of RICC versus R2. Dark bands indicate the interquartile range for RICC and R2.
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explanatory power of ultrasound machine quality was
moderate at best for the other indicators.
To detect which physicians have systematically higher

or lower measurements than the average physician, ran-
dom intercept plots were constructed showing the phy-
sician’s central tendency (mean or proportion) on the
x-axis and the random intercept on the y-axis (Figure 2).
There was considerable interphysician variability in the
measurements of the amount of fluid in the pouch of
Douglas, with average measurements per physician ran-
ging from 10 mm to 45 mm. Taking patient case-mix
into account, two physicians were identified as outlying
with lower measurements than the average physician.
Physician 5 positioned his patients horizontally on a flat
bench while measuring the fluid, which could explain
the low measurements. Physician 31 used an examin-
ation table with stirrups, on which the patient was
placed in the supine position. However, the gradient of
the patient’s trunk, which is most likely to influence the
measured amount of fluid in the pelvis, is unknown.
Hence, we could not determine why this physician ob-
tains remarkably low measurements.
Use of hormonal therapy at the time of the ultrasound

examination was between zero and ten percent for most
physicians (Figure 2). Given patient case-mix, four phy-
sicians were identified as outlying with higher rates of
hormonal therapy use than the average physician, as
indicated by the physicians’ positive random intercepts.
Three of them were from centers in Belgium and
Sweden, both countries in which hormonal therapy is
more frequently prescribed than in other countries,
such as Italy. The survey among physicians revealed
that the outliers had given their patients various examples
when asking them about hormonal therapy use, which
could have contributed to the large numbers of patients
with hormonal therapy use that they registered. The sur-
vey further revealed that physicians do not fully agree on
what they consider to be hormonal therapy.
The interphysician variability in patients’ experience of

pelvic pain during examination could not be explained
by the physician’s examination style, the type of probe
that was used, or the prevalence of endometriomas or
abscesses, which are known to be more painful than
other tumors, especially if pressure is applied on these
masses. It is likely that the registration of pain was sub-
ject to the empathy of the physician on the one hand,
and the pain threshold and inclination of the patient to
express pain on the other. The latter may vary from per-
son to person and additionally may also be country-
dependent [6].
Eight physicians were detected as outliers for the color

score of intratumoral blood flow, five with high and
three with low values, which may partly be explained by
the use of color or power Doppler ultrasonography by
different examiners. The survey among outlying physi-
cians included five images of ovarian masses, which had
to be rated. People with a tendency to give high scores
to the survey images also tended to have higher random
intercepts, and vice versa, indicating the subjectivity of
color scores.



Table 2 Effect of ultrasound machine quality on
differences between physicians

Variable n Reduction in
RICC

Number of locules (ordinal) 1997c 0.3%

[−0.1% to 1.2%]

Maximum diameter of the solid
component (mm, log transformed)

1160b −0.5%

[−1.1% to 1.1%]

Acoustic shadows (yes/no) 2407 −0.4%

[−3.6% to 0.9%]

Number of papillations (ordinal) 468d 3.1%

[−0.0% to 6.2%]

Maximum lesion diameter
(mm, log transformed)

2406e 0.2%

[−0.6% to 2.8%]

Presence of solid components (yes/no) 2407 0.7%

[−0.3% to 2.6%]

Bilateral (yes/no) 2407 −1.2%

[−3.7% to 2.1%]

Ascites (yes/no) 2407 3.6%

[−0.8% to 10.8%]

Free fluid in pouch of Douglas (yes/no) 2407 0.6%

[−0.5% to 3.1%]

Presence of papillations (yes/no) 2407 2.5%

[0.2% to 6.3%]

Irregular internal wall (yes/no) 2407 1.0%

[−0.5% to 4.1%]

Peak systolic velocity (cm/s, log transformed) 1432g 4.0%

[−0.5% to 9.4%]

Metastases (yes/no) 1457f 0.9%

[−1.3% to 6.5%]

Height of papillation (mm, log transformed) 468d 0.1%

[−2.9% to 8.8%]

Resistance index 1432g 5.6%

[−1.3% to 19.2%]

Papillations with detectable blood flow
(yes/no)

468d 2.7%

[−1.5% to 12.8%]

Color score of intratumoral blood flow
(ordinal)

2407 −0.4%

[−2.2% to 1.5%]

Amount of free fluid in pouch of Douglas
(mm, log transformed)

616h 0.8%

[−0.9% to 3.9%]

Difference in RICC [90% CI]. bIf at least one solid component is present;
cIf there is at least one locul; dIn case of the presence of a papillary structure;
eOne influential outlier removed (measurement error); fAssessment of
presence of metastases was not obligatory; gIf there is intratumoural blood
flow; hIf there is fluid in the pouch of Douglas.
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Discussion
Overview
In this paper we describe a novel use of the RICC as a
useful tool to screen variables for clustering in multicen-
ter studies. It expresses the degree of clustering as a per-
centage of the residual variance. Mixed models, allowing
control for patient- and cluster-level fixed effects, are
used to estimate the three parts of the total variance:
variance explained by the fixed effects (R2), residual vari-
ance at the patient level and residual variance at the
cluster level.
Depending on the context, it can be useful to take R2

into account when evaluating the degree of clustering,
comparable to a cost-benefit analysis (Figure 1). The
‘cost’ (RICC) is the degree of clustering which compli-
cates statistical analysis and may necessitate efforts to
detect and remove causes of clustering. The ‘benefit’ is
the extent to which a variable is related to the fixed
effects, for example the disease of interest. A higher R2

indicates that the variable is less influenced by distur-
bances at the physician and patient level. For a variable
with a high RICC but low R2, it may not be worth the ef-
fort to alleviate the amount of clustering and the variable
may be excluded from further data collection or analysis.
For variables with a high RICC and R2, e.g. color score
of intratumoral blood flow in our case study, it can be
worthwhile to investigate the cause of the clustering.
Careful consideration should be given to whether the co-
variance with the fixed effects outweighs the disadvan-
tages of data clustering.

Applications
The proposed methods can be used for quality control
when data collection in a large multicenter study is on-
going. In this way, problems with data clustering can be
identified and remedied in a timely fashion. Another ap-
plication is in model development, for example, of clin-
ical prediction models [18]. Some researchers state that,
before a variable is considered for inclusion in a predic-
tion model, its interrater reliability should be assessed
[19]. Others argue that this is superfluous because the
effect of unreliable measurements in multivariable mo-
dels will be diluted, i.e. self-penalization of unreliable
predictors. In our opinion it is preferable to screen for
various other forms of data clustering as part of the data
analysis in a multicenter study as well. This is discussed
in more detail in the next section.
Note that, when disease status is included as a fixed

effect, simultaneously inspecting R2 while screening for
clustering can provoke univariate variable selection. This
is generally not recommended, especially when the data-
set available for model building is limited in size [20]. In
our case study, there were 672 malignant tumors for 23
potential predictors, resulting in nearly 30 events per po-
tential predictor, while guidelines propose 10 to 50
events per variable depending on the situation [18]. In
case variable selection is required, sample size is an im-
portant determinant of appropriate selection procedures,
and we advise to rely mainly on prior expert knowledge
and multivariate selection procedures. Nonetheless, R2



Figure 2 Random physician intercept plots. From left to right and from top to bottom: amount of free fluid in the pouch of Douglas (mm),
current use of hormonal therapy (yes/no), pelvic pain during examination (yes/no), color score of intratumoral blood flow (ordinal, 1 no blood
flow, 2 minimal blood flow, 3 moderate blood flow, 4 very strong blood flow). X-axis: average measure or prevalence per physician. Bubble size
represents the number of patients per physician. Dark bubbles: physicians with a random intercept different from zero (adjusted p-value < 0.05
after correction for multiple testing using the false discovery rate method).
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can play a role when sample size permits and when it is
part of a carefully designed selection procedure. When
data-driven variable selection is not an issue, the use of
R2 is not problematic.
In randomized trials, a fixed effect that should be taken

into account when studying clustering is the treatment
arm, unless clustering of baseline measurements is investi-
gated. Therefore, the proposed methodology can be ap-
plied during an interim analysis of the treatment effect.
Recent studies have stressed the importance of acknow-
ledging clustering in randomized controlled trials [21,22].
Regarding the final statistical analysis of the data,

cluster-adjusted statistical techniques should be consi-
dered for multicenter data. Mixed effects models do not
make the assumption that observations are independent
and have the additional advantage of providing cluster-
specific predictions [8,23].

Strengths and weaknesses
A strength of the proposed approach is that it can be ap-
plied to any regular multicenter dataset, as it does not
require measurements by multiple physicians for the
same patient. In addition, various forms of data clus-
tering are captured, including systematic interrater dis-
agreement, differences in measurement equipment or
settings, deviations from the measurement protocol,
sociocultural characteristics, and differences in patient
populations due to e.g. local referral patterns. The con-
sequence is that the cause of the clustering is not
immediately clear. In our survey, the problem was com-
plicated further due to the amount of time that has
passed between data collection and the survey on mea-
surements (six years), potentially yielding recall bias.
Nonetheless, in order to alleviate clustering it is impera-
tive to investigate the causes of clustering. For example,
when variables are subjective or the measurement proto-
col is unclear, providing training or protocol adjustment
may help. It is also useful to detect clustering caused by
differences in the populations seen by physicians (e.g.
local referral patterns), since it is not possible to build a
generalizable prediction model when such heterogeneity
is too large.
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Note that RICC only detects systematic differences in
measurements between physicians. In the case of sub-
jectivity of measurements, random intercepts will only
indicate which physicians give consistently higher or lo-
wer scores than the average physician. Random (within-
physician) variability will contribute to the residual
variance at the patient level. To study non-systematic
differences, an interrater reliability study is needed in
which two or more physicians investigate the same
patients in order to detect whether physicians would
give the same scores to the same patients [4,5].
There are two methodological difficulties associated

with our approach. First, a relatively large amount of
data is needed to reliably compute the variance at the
cluster level. This problem is most pronounced for cat-
egorical variables. The amount of variance at the cluster
level will often be underestimated, a problem that in-
creases as the number of clusters decreases [24-26]. This
also explains the observed width of the bootstrap con-
fidence intervals in the case study. Second, similar to
provider profiling studies [18], it is not always straight-
forward how to take patient case-mix into account. In
this study, tumor type was categorized into four groups
(benign, borderline, invasive cancer, metastatic cancer),
but a more general or more detailed categorization could
have been chosen as well. This decision should involve
experts’ opinions. Relevant categories should be taken
into account, but the number of categories must be low
enough to guarantee reliable estimates. For our case
study, it is known that pelvic pain during examination
might be worse for endometriomata and abscesses.
Therefore, we could have used endometriomata and ab-
scesses as a fifth category. Doing so marginally increased
the RICC from 18.9% to 19.4%. This implies that caution
must be taken when comparing the RICC across studies,
as results may vary depending on variable definitions or
the choice of fixed effect factors. For time-to-event out-
comes, disease status may be accounted for by using the
cumulative baseline hazard and an event indicator as
fixed effects in the mixed model, analogous to a sug-
gested approach for missing data imputation in the
time-to-event setting [27].

Conclusions
Although performing multicenter studies enhances
generalizability of results, we recommend that the clus-
tered nature of collected data is acknowledged and in-
vestigated. The RICC is a useful tool that expresses the
degree of clustering as a percentage. An advantage of
the RICC is that it does not require repeated measure-
ments on the same patients by various physicians. The
observed degree of clustering may be decreased by ad-
justing the measurement protocol and providing training
to physicians.
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