1,983 research outputs found
Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC)
Used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow
for studies of heavy-flavour hadroproduction with unprecedented precision at
backward rapidities - far negative Feyman-x - using conventional detection
techniques. At the nominal LHC energies, quarkonia can be studies in detail in
p+p, p+d and p+A collisions at sqrt(s_NN) ~ 115 GeV as well as in Pb+p and Pb+A
collisions at sqrt(s_NN) ~ 72 GeV with luminosities roughly equivalent to that
of the collider mode, i.e. up to 20 fb-1 yr-1 in p+p and p+d collisions, up to
0.6 fb-1 yr-1 in p+A collisions and up to 10 nb-1 yr-1 in Pb+A collisions. In
this paper, we assess the feasibility of such studies by performing fast
simulations using the performance of a LHCb-like detector.Comment: 12 pages, 14 figure
HAEMODYNAMIC RESPONSE DURING EXERCISE TESTING IN PATIENTS WITH CORONARY ARTERY DISEASE UNDERGOING A CARDIAC REHABILITATION PROGRAMME
Haemodynamic monitoring during exercise testing is seldom used during cardiac rehabilitation. The aim was to evaluate haemodynamic changes using the cardiac impedance method during exercise testing in patients after percutaneous coronary interventions and coronary artery bypass grafting during cardiac rehabilitation. Thirty (25 M; 5 F) patients were included in the programme. The group was divided according to ejection fraction (EF): low – below 50% normal – equal to or above 50%. The exercise test was performed simultaneously with a four-electrode impedance cardiogram before and after rehabilitation. ECG, blood pressure, thoracic impedance, first derivative dz/dt, stroke volume (SV) and cardiac output were recorded. Contractility index (Heather index – HI) and vascular peripheral resistance were calculated. The pattern of haemodynamic changes was normal in 24 patients. The deflection points for HI and SV trend patterns were observed among patients with low EF. The contractility index decreased 90 s before maximal exercise and after the next 30-60 s a deflection point was observed in SV curve trends. In 24 patients with normal EF the contractility index trends did not decrease and SV trends increased until the end of exercise or a deflection point was not noted. The deflection points of the contractility index and SV curves were observed before the clinical indications for exercise test termination appeared in patients with a low ejection fraction. Impedance cardiography may indicate the threshold of the workload during real-time exercise testing
Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production
We outline the case for heavy-ion-physics studies using the multi-TeV lead
LHC beams in the fixed-target mode. After a brief contextual reminder, we
detail the possible contributions of AFTER@LHC to heavy-ion physics with a
specific emphasis on quarkonia. We then present performance simulations for a
selection of observables. These show that , and
production in heavy-ion collisions can be studied in new energy and
rapidity domains with the LHCb and ALICE detectors. We also discuss the
relevance to analyse the Drell-Yan pair production in asymmetric
nucleus-nucleus collisions to study the factorisation of the nuclear
modification of partonic densities and of further quarkonia to restore their
status of golden probes of the quark-gluon plasma formation.Comment: 18 pages, 7 figure
Measurement of the production of charm jets tagged with D mesons in pp collisions at = 7 TeV
The production of charm jets in proton-proton collisions at a center-of-mass
energy of TeV was measured with the ALICE detector at the CERN
Large Hadron Collider. The measurement is based on a data sample corresponding
to a total integrated luminosity of , collected using a
minimum-bias trigger. Charm jets are identified by the presence of a D
meson among their constituents. The D mesons are reconstructed from their
hadronic decay DK. The D-meson tagged jets are
reconstructed using tracks of charged particles (track-based jets) with the
anti- algorithm in the jet transverse momentum range
and pseudorapidity
. The fraction of charged jets containing a D-meson
increases with from to . The distribution of D-meson tagged jets as a
function of the jet momentum fraction carried by the D meson in the
direction of the jet axis () is reported for two ranges
of jet transverse momenta, and
in the intervals
and , respectively. The
data are compared with results from Monte Carlo event generators (PYTHIA 6,
PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum
Chromodynamics calculation, obtained with the POWHEG method and interfaced with
PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation
and underlying event.Comment: 29 pages, 8 captioned figures, 3 tables, authors from page 24,
published version, figures at http://alice-publications.web.cern.ch/node/525
Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at = 2.76$ TeV
In ultrarelativistic heavy-ion collisions, the event-by-event variation of
the elliptic flow reflects fluctuations in the shape of the initial state
of the system. This allows to select events with the same centrality but
different initial geometry. This selection technique, Event Shape Engineering,
has been used in the analysis of charge-dependent two- and three-particle
correlations in Pb-Pb collisions at TeV. The
two-particle correlator ,
calculated for different combinations of charges and , is
almost independent of (for a given centrality), while the three-particle
correlator
scales almost linearly both with the event and charged-particle
pseudorapidity density. The charge dependence of the three-particle correlator
is often interpreted as evidence for the Chiral Magnetic Effect (CME), a parity
violating effect of the strong interaction. However, its measured dependence on
points to a large non-CME contribution to the correlator. Comparing the
results with Monte Carlo calculations including a magnetic field due to the
spectators, the upper limit of the CME signal contribution to the
three-particle correlator in the 10-50% centrality interval is found to be
26-33% at 95% confidence level.Comment: 20 pages, 6 captioned figures, 1 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/382
Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions
This report reviews the study of open heavy-flavour and quarkonium production
in high-energy hadronic collisions, as tools to investigate fundamental aspects
of Quantum Chromodynamics, from the proton and nucleus structure at high energy
to deconfinement and the properties of the Quark-Gluon Plasma. Emphasis is
given to the lessons learnt from LHC Run 1 results, which are reviewed in a
global picture with the results from SPS and RHIC at lower energies, as well as
to the questions to be addressed in the future. The report covers heavy flavour
and quarkonium production in proton-proton, proton-nucleus and nucleus-nucleus
collisions. This includes discussion of the effects of hot and cold strongly
interacting matter, quarkonium photo-production in nucleus-nucleus collisions
and perspectives on the study of heavy flavour and quarkonium with upgrades of
existing experiments and new experiments. The report results from the activity
of the SaporeGravis network of the I3 Hadron Physics programme of the European
Union 7th Framework Programme
Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions
We present measurements of and elliptic flow, , at
midrapidity in Au+Au collisions at 200, 62.4, 39, 27,
19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry,
, based on data from the STAR experiment at RHIC. We find that
() elliptic flow linearly increases (decreases) with charge asymmetry
for most centrality bins at and higher.
At , the slope of the difference of
between and as a function of exhibits a
centrality dependence, which is qualitatively similar to calculations that
incorporate a chiral magnetic wave effect. Similar centrality dependence is
also observed at lower energies.Comment: 6 pages, 4 figure
Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV
We report new STAR measurements of mid-rapidity yields for the ,
, , , , ,
particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity
yields for the , , particles in Au+Au at
\sNN{200}. We show that at a given number of participating nucleons, the
production of strange hadrons is higher in Cu+Cu collisions than in Au+Au
collisions at the same center-of-mass energy. We find that aspects of the
enhancement factors for all particles can be described by a parameterization
based on the fraction of participants that undergo multiple collisions
- …
