251 research outputs found

    The histidine-rich peptide LAH4-L1 strongly promotes PAMAM-mediated transfection at low nitrogen to phosphorus ratios in the presence of serum

    Get PDF
    Non-viral vectors are widely used and investigated for the delivery of genetic material into cells. However, gene delivery barriers like lysosomal degradation, serum inhibition and transient gene expression so far still limit their clinical applications. Aiming to overcome these limitations, a pH-sensitive hybrid gene vector (PSL complex) was designed by self-assembly of poly(amidoamine) (PAMAM) dendrimers, the histidine-rich peptide LAH4-L1 and the sleeping beauty transposon system (SB transposon system, a plasmid system capable of efficient and precise genomic insertion). Transfection studies revealed that PSL complexes achieved excellent efficiency in all investigated cell lines (higher than 90% in HeLa cells and over 30% in MDCK cells, a difficult-to-transfect cell line). Additionally, the PSL complexes showed high serum tolerance and exhibited outstanding transfection efficiency even in medium containing 50% serum (higher than 90% in HeLa cells). Moreover, a high level of long-term gene expression (over 30% in HeLa cells) was observed. Furthermore, PSL complexes not only resulted in high endocytosis, but also showed enhanced ability of endosomal escape compared to PAMAM/DNA complexes. These results demonstrate that simple association of PAMAM dendrimers, LAH4-L1 peptides and the SB transposon system by self-assembly is a general and promising strategy for efficient and safe gene delivery.PMC557505

    Obstructed surface states as the descriptor for predicting catalytic active sites in inorganic crystalline materials

    Get PDF
    The discovery of new catalysts that are efficient and sustainable is a major research endeavor for many industrial chemical processes. This requires an understanding and determination of the catalytic origins, which remains a challenge. Here, a novel method to identify the position of active sites based on searching for crystalline symmetry-protected obstructed atomic insulators (OAIs) that have metallic surface states is described. The obstructed Wannier charge centers (OWCCs) in OAIs are pinned by symmetries at some empty Wyckoff positions so that surfaces that accommodate these sites are guaranteed to have metallic obstructed surface states (OSSs). It is proposed and confirmed that the OSSs are the catalytic activity origins for crystalline materials. The theory on 2H-MoTe2, 1Tβ€²-MoTe2, and NiPS3 bulk single crystals is verified, whose active sites are consistent with the calculations. Most importantly, several high-efficiency catalysts are successfully identified just by considering the number of OWCCs and the symmetry. Using the real-space-invariant theory applied to a database of 34 013 topologically trivial insulators, 1788 unique OAIs are identified, of which 465 are potential high-performance catalysts. The new methodology will facilitate and accelerate the discovery of new catalysts for a wide range of heterogeneous redox reactions

    Testing in the incremental design and development of complex products

    Get PDF
    Testing is an important aspect of design and development which consumes significant time and resource in many companies. However, it has received less research attention than many other activities in product development, and especially, very few publications report empirical studies of engineering testing. Such studies are needed to establish the importance of testing and inform the development of pragmatic support methods. This paper combines insights from literature study with findings from three empirical studies of testing. The case studies concern incrementally developed complex products in the automotive domain. A description of testing practice as observed in these studies is provided, confirming that testing activities are used for multiple purposes depending on the context, and are intertwined with design from start to finish of the development process, not done after it as many models depict. Descriptive process models are developed to indicate some of the key insights, and opportunities for further research are suggested

    Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion

    Get PDF
    One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes

    A Screening Pipeline for Antiparasitic Agents Targeting Cryptosporidium Inosine Monophosphate Dehydrogenase

    Get PDF
    Persistent diarrhea is a leading cause of illness and death among impoverished children, and a growing share of this disease burden can be attributed to the parasite Cryptosporidium. There are no vaccines to prevent Cryptosporidium infection, and the treatment options are limited and unreliable. Critically, no effective treatment exists for children or adults suffering from AIDS. Cryptosporidium presents many technical obstacles for drug discovery; perhaps the most important roadblock is the difficulty of monitoring drug action. Here we have developed a set of methods to accelerate the drug discovery process for cryptosporidiosis. We exploit the opportunities for experimental manipulation in the related parasite Toxoplasma to genetically engineer a Cryptosporidium model. This new model parasite mirrors the metabolism of Cryptosporidium for a particularly promising drug target that supplies the building blocks for DNA and RNA. Drug effectiveness can be assayed through simple fluorescence measurements for many candidates. Using this assay as an initial filter, and adapting other assays to a high throughput format, we identify several novel chemical compounds that exhibit markedly improved anti-cryptosporidial activity and excellent selectivity

    Warmer Weather Linked to Tick Attack and Emergence of Severe Rickettsioses

    Get PDF
    The impact of climate on the vector behaviour of the worldwide dog tick Rhipicephalus sanguineus is a cause of concern. This tick is a vector for life-threatening organisms including Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, R. conorii, the agent of Mediterranean spotted fever, and the ubiquitous emerging pathogen R. massiliae. A focus of spotted fever was investigated in France in May 2007. Blood and tissue samples from two patients were tested. An entomological survey was organised with the study of climatic conditions. An experimental model was designed to test the affinity of Rh. sanguineus for biting humans in variable temperature conditions. Serological and/or molecular tools confirmed that one patient was infected by R. conorii, whereas the other was infected by R. massiliae. Dense populations of Rh. sanguineus were found. They were infected with new genotypes of clonal populations of either R. conorii (24/133; 18%) or R. massiliae (13/133; 10%). April 2007 was the warmest since 1950, with summer-like temperatures. We show herein that the human affinity of Rh. sanguineus was increased in warmer temperatures. In addition to the originality of theses cases (ophthalmic involvements, the second reported case of R. massiliae infection), we provide evidence that this cluster of cases was related to a warming-mediated increase in the aggressiveness of Rh. sanguineus, leading to increased human attacks. From a global perspective, we predict that as a result of globalisation and warming, more pathogens transmitted by the brown dog tick may emerge in the future

    Hypoxia Sensitive Metal Ξ²-Ketoiminate Complexes Showing Induced Single Strand DNA Breaks and Cancer Cell Death by Apoptosis

    Get PDF
    A series of ruthenium and iridium complexes have been synthesised and characterised with 20 novel crystal structures discussed. The library of Ξ²-ketoiminate complexes has been shown to be active against MCF-7 (human breast carcino-ma), HT-29 (human colon carcinoma), A2780 (human ovarian carcinoma) and A2780cis (cisplatin resistant human ovarian carcinoma) cell lines, with selected complexes being more than three times as active as cisplatin against the A2780cis cell line. Complexes have also been shown to be highly active under hypoxic conditions, with the activities of some complexes increasing with a decrease in O2 concentration. The enzyme thioredoxin reductase is over-expressed in cancer cells and complexes reported herein have the advantage of inhibiting this enzyme, with IC50 values measured in the nanomolar range. The anti-cancer activity of these complexes was further investigated to determine whether activity is due to effects on cellular growth or cell survival. The complexes were found to induce significant cancer cell death by apoptosis with levels induced correlating closely with activity in chemosensitivity studies. As a possible cause of cell death, the ability of the complexes to induce damage to cellular DNA was also assessed. The complexes failed to induce double strand DNA break or DNA crosslinking but induced significant levels of single DNA strand breaks indi-cating a different mechanism of action to cisplatin
    • …
    corecore