259 research outputs found
Unique features of a global human ectoparasite identified through sequencing of the bed bug genome
The bed bug, Cimex lectularius, has re-established itself as a ubiquitous
human ectoparasite throughout much of the world during the past two decades.
This global resurgence is likely linked to increased international travel and
commerce in addition to widespread insecticide resistance. Analyses of the C.
lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding
genes provide a comprehensive representation of genes that are linked to
traumatic insemination, a reduced chemosensory repertoire of genes related to
obligate hematophagy, host–symbiont interactions, and several mechanisms of
insecticide resistance. In addition, we document the presence of multiple
putative lateral gene transfer events. Genome sequencing and annotation
establish a solid foundation for future research on mechanisms of insecticide
resistance, human–bed bug and symbiont–bed bug associations, and unique
features of bed bug biology that contribute to the unprecedented success of C.
lectularius as a human ectoparasite
The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control
Unique Features of a Global Human Ectoparasite Identified Through Sequencing of the Bed Bug Genome
The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite
Publisher Correction: The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control (BMC Biology, (2021), 19, 1, (41), 10.1186/s12915-021-00975-9)
Following publication of the original article [1], it was reported that the article copyright was incorrect. The correct copyright statement is: © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021. The original article [1] has been corrected
Human Papillomavirus Oral- and Sero- Positivity in Fanconi Anemia
High-risk human papillomavirus (HPV) is prevalent and known to cause 5% of all cancers worldwide. The rare, cancer prone Fanconi anemia (FA) population is characterized by a predisposition to both head and neck squamous cell carcinomas and gynecological cancers, but the role of HPV in these cancers remains unclear. Prompted by a patient-family advocacy organization, oral HPV and HPV serological studies were simultaneously undertaken. Oral DNA samples from 201 individuals with FA, 303 unaffected family members, and 107 unrelated controls were tested for 37 HPV types. Serum samples from 115 individuals with FA and 55 unrelated controls were tested for antibodies against 9 HPV types. Oral HPV prevalence was higher for individuals with FA (20%) versus their parents (13%; p = 0.07), siblings (8%, p = 0.01), and unrelated controls (6%, p ≤ 0.001). A FA diagnosis increased HPV positivity 4.84-fold (95% CI: 1.96-11.93) in adjusted models compared to unrelated controls. Common risk factors associated with HPV in the general population did not predict oral positivity in FA, unlike unrelated controls. Seropositivity and anti-HPV titers did not significantly differ in FA versus unrelated controls regardless of HPV vaccination status. We conclude that individuals with FA are uniquely susceptible to oral HPV independent of conventional risk factors
Recommended from our members
Improved annotation of the insect vector of citrus greening disease: biocuration by a diverse genomics community
Author affiliation for Liliana Cano has been corrected to link to University of Florida/IFAS Indian River Research and Education Center, Ft. Pierce, FL 34945
Comparative Genomic Analysis of six Glossina Genomes, Vectors of African Trypanosomes
Background: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout subSaharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. Results: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Visionassociated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. Conclusions: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies
Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest
Background
Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species’ feeding and habitat traits, defining potential targets for pest management strategies.
Results
Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys’ capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications.
Conclusions
Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls
The Toxicogenome of Hyalella azteca:A Model for Sediment Ecotoxicology and Evolutionary Toxicology
- …
