614 research outputs found

    Characterization of the rainy season in Burkina Faso and it's representation by regional climate models

    Get PDF
    International audienceWest African monsoon is one of the most challenging climate components to model. Five regional climate models (RCMs) were run over the West African region with two lateral boundary conditions, ERA-Interim re-analysis and simulations from two general circulation models (GCMs). Two sets of daily rainfall data were generated from these boundary conditions. These simulated rainfall data are analyzed here in comparison to daily rainfall data collected over a network of ten synoptic stations in Burkina Faso from 1990 to 2004. The analyses are based on a description of the rainy season throughout a number of it's characteristics. It was found that the two sets of rainfall data produced with the two driving data present significant biases. The RCMs generally produce too frequent low rainfall values (between 0. 1 and 5 mm/day) and too high extreme rainfalls (more than twice the observed values). The high frequency of low rainfall events in the RCMs induces shorter dry spells at the rainfall thresholds of 0. 1-1 mm/day. Altogether, there are large disagreements between the models on the simulate season duration and the annual rainfall amounts but most striking are their differences in representing the distribution of rainfall intensity. It is remarkable that these conclusions are valid whether the RCMs are driven by re-analysis or GCMs. In none of the analyzed rainy season characteristics, a significant improvement of their representation can be found when the RCM is forced by the re-analysis, indicating that these deficiencies are intrinsic to the models. © 2011 The Author(s)

    On the role of soil moisture in the generation of heavy rainfall during the Oder flood event in July 1997

    No full text
    Soil moisture-atmosphere feedbacks play an important role in the regional climate over many regions worldwide, not only for the mean climate but also for extreme events. Several studies have shown that the extent and severity of droughts and heat waves can be significantly impacted by dry or wet soil moisture conditions. To date, the impact of soil moisture on heavy rainfall events has been less frequently investigated. Thus, we consider the role of soil moisture in the formation of heavy rainfall using the Oder flood event in July 1997 as an example. Here, we used the regional climate model CCLM as an uncoupled stand alone model and the coupled COSTRICE system, where CCLM is coupled with an ocean and a sea ice model over the Baltic and North Sea regions. The results from climate simulations over Europe show that the coupled model can capture the second phase (18-20 July) of heavy rainfall that led to the Oder flood, while the uncoupled model does not. Sensitivity experiments demonstrate that the better performance of the coupled model can be attributed to the simulated soil moisture conditions in July 1997 in Central Europe, which were wetter for the coupled model than for the uncoupled model. This finding indicates that the soil moisture preceding the event significantly impacted the generation of heavy rainfall in this second phase. The better simulation in the coupled model also implies the added value that the atmosphere-ocean coupling has on the simulation of this specific extreme event. As none of the model versions captured the first phase (4-8 July), despite the differences in soil moisture, it can be concluded that the importance of soil moisture for the generation of heavy rainfall events strongly depends on the event and the general circulation pattern associated with it

    The COSMO-CLM preprocessor PEP

    Get PDF

    Effects of external nutrient sources and extreme weather events on the nutrient budget of a Southern European coastal lagoon

    Get PDF
    The seasonal and annual nitrogen (N), phosphorus (P), and carbon (C) budgets of the mesotidal Ria Formosa lagoon, southern Portugal, were estimated to reveal the main inputs and outputs, the seasonal patterns, and how they may influence the ecological functioning of the system. The effects of extreme weather events such as long-lasting strong winds causing upwelling and strong rainfall were assessed. External nutrient inputs were quantified; ocean exchange was assessed in 24-h sampling campaigns, and final calculations were made using a hydrodynamic model of the lagoon. Rain and stream inputs were the main freshwater sources to the lagoon. However, wastewater treatment plant and groundwater discharges dominated nutrient input, together accounting for 98, 96, and 88 % of total C, N, and P input, respectively. Organic matter and nutrients were continuously exported to the ocean. This pattern was reversed following extreme events, such as strong winds in early summer that caused upwelling and after a period of heavy rainfall in late autumn. A principal component analysis (PCA) revealed that ammonium and organic N and C exchange were positively associated with temperature as opposed to pH and nitrate. These variables reflected mostly the benthic lagoon metabolism, whereas particulate P exchange was correlated to Chl a, indicating that this was more related to phytoplankton dynamics. The increase of stochastic events, as expected in climate change scenarios, may have strong effects on the ecological functioning of coastal lagoons, altering the C and nutrient budgets.Portuguese Science and Technology Foundation (FCT) [POCI/MAR/58427/2004, PPCDT/MAR/58427/2004]; Portuguese Science and Technology Foundation (FCT

    Complex networks for climate model evaluation with application to statistical versus dynamical modeling of South American climate

    Get PDF
    Acknowledgments: This paper was developed within the scope of the IRTG 1740/TRP 2011/50151-0, funded by the DFG/FAPESP. Furthermore, this work has been financially supported by the Leibniz Society (project ECONS), and the Stordalen Foundation (JFD). For certain calculations, the software packages pyunicorn (Donges et al. 2013a) and igraph (Csa´rdi and Nepusz 2006) were used. The authors would like to thank Manoel F. Cardoso, Niklas Boers, and the reviewers for helpful comments on the manuscript. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Peer reviewedPostprin

    Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    Get PDF
    Acknowledgments We thank Reik V. Donner for inspiring suggestions that initialized the work presented herein. Jan H. Feldhoff is credited for providing us with the STARS simulation data and for his contributions to fruitful discussions. Comments by the anonymous reviewers are gratefully acknowledged as they led to substantial improvements of the manuscript.Peer reviewedPublisher PD

    The RACE Project: Robustness by Autonomous Competence Enhancement

    Get PDF
    This paper reports on the aims, the approach, and the results of the European project RACE. The project aim was to enhance the behavior of an autonomous robot by having the robot learn from conceptualized experiences of previous performance, based on initial models of the domain and its own actions in it. This paper introduces the general system architecture; it then sketches some results in detail regarding hybrid reasoning and planning used in RACE, and instances of learning from the experiences of real robot task execution. Enhancement of robot competence is operationalized in terms of performance quality and description length of the robot instructions, and such enhancement is shown to result from the RACE system

    Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe

    Get PDF
    A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed Sea Surface Temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution

    Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE pacific cross-section intercomparison (GPCI)

    No full text
    International audienceA model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ-the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June-July-August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yrECMWFRe-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models. © 2011 American Meteorological Society
    corecore