1,172 research outputs found
Binary fluid amplifier solves stability and load problems
Digital fluid amplifier has load intensity, high stability, and operates at low reynolds numbers. It contains specially designed nozzles to provide uniform exit-velocity profiles and to ensure jets of low turbulence
Precision measurement of the branching ratio in the 6P3/2 decay of BaII with a single trapped ion
We present a measurement of the branching ratios from the 6P3/2 state of BaII
into all dipoleallowed decay channels (6S1/2, 5D3/2 and 5D5/2). Measurements
were performed on single 138Ba+ ions in a linear Paul trap with a
frequency-doubled mode-locked Ti:Sapphire laser resonant with the 6S1/2->6P3/2
transition at 455 nm by detection of electron shelving into the dark 5D5/2
state. By driving a pi Rabi rotation with a single femtosecond pulse, a
absolute measurement of the branching ratio to 5D5/2 state was performed.
Combined with a measurement of the relative decay rates into 5D3/2 and 5D5/2
states performed with long trains of highly attenuated 455 nm pulses, it
allowed the extraction of the absolute ratios of the other two decays. Relative
strengths normalized to unity are found to be 0.756+/-0.046, 0.0290+/-0.0015
and 0.215+/-0.0064 for 6S1/2, 5D3/2 and 5D5/2 respectively. This approximately
constitutes a threefold improvement over the best previous measurements and is
a sufficient level of precision to compare to calculated values for dipole
matrix elements.Comment: 6 pages, 5 figures, 1 tabl
EUV spectra of highly-charged ions W-W relevant to ITER diagnostics
We report the first measurements and detailed analysis of extreme ultraviolet
(EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W to
W obtained with an electron beam ion trap (EBIT). Collisional-radiative
modelling is used to identify strong electric-dipole and magnetic-dipole
transitions in all ionization stages. These lines can be used for impurity
transport studies and temperature diagnostics in fusion reactors, such as ITER.
Identifications of prominent lines from several W ions were confirmed by
measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the
importance of charge exchange recombination for correct description of
ionization balance in the EBIT plasma.Comment: 11 pages, 4 figure
Comment on studying the corrections to factorization in B -> D(*) X
We propose studying the mechanism of factorization in exclusive decays of the
form B->D(*)X by examining the differential decay rate as a function of the
invariant mass of the light hadronic state X. If factorization works primarily
due to the large N_c limit then its accuracy is not expected to decrease as the
X invariant mass increases. However, if factorization is mostly a consequence
of perturbative QCD then the corrections should grow with the X invariant mass.
Combining data for hadronic tau decays and semileptonic B decays allows tests
of factorization to be made for a variety of final states. We discuss the
examples of B->D^*\pi^+\pi^-\pi^-\pi^0 and B->D^*\omega\pi^-. The mode
B->D^*\omega\pi^- will allow a precision study of the dependence of the
corrections to factorization on the invariant mass of the light hadronic state.Comment: 7 pages, minor clarifications to tex
A large-scale R-matrix calculation for electron-impact excitation of the Ne O-like ion
The five J levels within a or ground state complex provide
an excellent testing ground for the comparison of theoretical line ratios with
astrophysically observed values, in addition to providing valuable electron
temperature and density diagnostics. The low temperature nature of the line
ratios ensure that the theoretically derived values are sensitive to the
underlying atomic structure and electron-impact excitation rates. Previous
R-matrix calculations for the Ne O-like ion exhibit large spurious
structure in the cross sections at higher electron energies, which may affect
Maxwellian averaged rates even at low temperatures. Furthermore, there is an
absence of comprehensive excitation data between the excited states that may
provide newer diagnostics to compliment the more established lines discussed in
this paper. To resolve these issues, we present both a small scale 56-level
Breit-Pauli (BP) calculation and a large-scale 554 levels R-matrix Intermediate
Coupling Frame Transformation (ICFT) calculation that extends the scope and
validity of earlier JAJOM calculations both in terms of the atomic structure
and scattering cross sections. Our results provide a comprehensive
electron-impact excitation data set for all transitions to higher shells.
The fundamental atomic data for this O-like ion is subsequently used within a
collisional radiative framework to provide the line ratios across a range of
electron temperatures and densities of interest in astrophysical observations.Comment: 17 pages, 8 figure
Sparking Interest in Archival Research
The power point slides of David Reader's presentation on November 8, 2019. The educator and the use of archival materials (logistics, assignments, and experience)
K-shell photoionization of ground-state Li-like boron ions [B]: Experiment and Theory
Absolute cross sections for the K-shell photoionization of ground-state
Li-like boron [B(1s2s S)] ions were measured by employing the
ion-photon merged-beams technique at the Advanced Light Source synchrotron
radiation facility. The energy ranges 197.5--200.5 eV, 201.9--202.1 eV of the
[1s(2s\,2p)P]P and [1s(2s\,2p)P] P
resonances, respectively, were investigated using resolving powers of up to
17\,600. The energy range of the experiments was extended to about 238.2 eV
yielding energies of the most prominent
[1s(2\,n)]P resonances with an absolute accuracy
of the order of 130 ppm. The natural linewidths of the [1s(2s\,2p)P]
P and [1s(2s\,2p)P] P resonances were measured
to be meV and meV, respectively, which compare
favourably with theoretical results of 4.40 meV and 30.53 meV determined using
an intermediate coupling R-matrix method.Comment: 6 figures and 2 table
State-resolved valence shell photoionization of Be-like ions: experiment and theory
High-resolution photoionization experiments were carried out using beams of
Be-like C, N, and O ions with roughly equal populations of
the S ground-state and the P manifold of metastable components. The
energy scales of the experiments are calibrated with uncertainties of 1 to 10
meV depending on photon energy. Resolving powers beyond 20,000 were reached
allowing for the separation of contributions from the individual metastable
P, P, and P states. The measured data compare
favourably with semi-relativistic Breit-Pauli R-matrixComment: 23 figures and 3 table
Social network analysis shows direct evidence for social transmission of tool use in wild chimpanzees
The authors are grateful to the Royal Zoological Society of Scotland for providing core funding for the Budongo Conservation Field Station. The fieldwork of CH was funded by the Leverhulme Trust, the Lucie Burgers Stichting, and the British Academy. TP was funded by the Canadian Research Chair in Continental Ecosystem Ecology, and received computational support from the Theoretical Ecosystem Ecology group at UQAR. The research leading to these results has received funding from the People Programme (Marie Curie Actions) and from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013) REA grant agreement n°329197 awarded to TG, ERC grant agreement n° 283871 awarded to KZ. WH was funded by a BBSRC grant (BB/I007997/1).Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition-that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, "moss-sponging'' and "leaf-sponge re-use,'' in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most "cultural'' of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.Publisher PDFPeer reviewe
Theory and applications of atomic and ionic polarizabilities
Atomic polarization phenomena impinge upon a number of areas and processes in
physics. The dielectric constant and refractive index of any gas are examples
of macroscopic properties that are largely determined by the dipole
polarizability. When it comes to microscopic phenomena, the existence of
alkaline-earth anions and the recently discovered ability of positrons to bind
to many atoms are predominantly due to the polarization interaction. An
imperfect knowledge of atomic polarizabilities is presently looming as the
largest source of uncertainty in the new generation of optical frequency
standards. Accurate polarizabilities for the group I and II atoms and ions of
the periodic table have recently become available by a variety of techniques.
These include refined many-body perturbation theory and coupled-cluster
calculations sometimes combined with precise experimental data for selected
transitions, microwave spectroscopy of Rydberg atoms and ions, refractive index
measurements in microwave cavities, ab initio calculations of atomic structures
using explicitly correlated wave functions, interferometry with atom beams, and
velocity changes of laser cooled atoms induced by an electric field. This
review examines existing theoretical methods of determining atomic and ionic
polarizabilities, and discusses their relevance to various applications with
particular emphasis on cold-atom physics and the metrology of atomic frequency
standards.Comment: Review paper, 44 page
- …
