235 research outputs found
Variability of cell wall polysaccharides composition and hemicellulose enzymatic profile in an apple progeny
The genetic variability of apple cell walls polysaccharides chemical composition and structure was assessed in a progeny of 141 individuals harvested over 2 years. The variability of the hemicelluloses oligosaccharides released by glucanase was analyzed by MALDI-TOF MS. The genetic contribution was distinguished from harvest year as well as from parental crossing patterns and scab resistance selection. Results showed that harvest year had a major impact on cell wall polysaccharide composition and structure. Within each harvest, genetic effect impact more significantly cell wall polysaccharide chemistry than does reciprocal crossing or early scab selection. Uronic acids, glucose, galactose and xylose contents as well as some glucomannan and xyloglucan structures have a high heritability. This first cell wall chemotyping of an apple progeny opens the way for future searches of genetic markers for the chemical variability of cell wall polysaccharides
Controlling the quantum stereodynamics of ultracold bimolecular reactions
Chemical reaction rates often depend strongly on stereodynamics, namely the
orientation and movement of molecules in three-dimensional space. An ultracold
molecular gas, with a temperature below 1 uK, provides a highly unusual regime
for chemistry, where polar molecules can easily be oriented using an external
electric field and where, moreover, the motion of two colliding molecules is
strictly quantized. Recently, atom-exchange reactions were observed in a
trapped ultracold gas of KRb molecules. In an external electric field, these
exothermic and barrierless bimolecular reactions, KRb+KRb -> K2+Rb2, occur at a
rate that rises steeply with increasing dipole moment. Here we show that the
quantum stereodynamics of the ultracold collisions can be exploited to suppress
the bimolecular chemical reaction rate by nearly two orders of magnitude. We
use an optical lattice trap to confine the fermionic polar molecules in a
quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along
the tight confinement direction. With the combination of sufficiently tight
confinement and Fermi statistics of the molecules, two polar molecules can
approach each other only in a "side-by-side" collision, where the chemical
reaction rate is suppressed by the repulsive dipole-dipole interaction. We show
that the suppression of the bimolecular reaction rate requires quantum-state
control of both the internal and external degrees of freedom of the molecules.
The suppression of chemical reactions for polar molecules in a
quasi-two-dimensional trap opens the way for investigation of a dipolar
molecular quantum gas. Because of the strong, long-range character of the
dipole-dipole interactions, such a gas brings fundamentally new abilities to
quantum-gas-based studies of strongly correlated many-body physics, where
quantum phase transitions and new states of matter can emerge.Comment: 19 pages, 4 figure
Dipolar collisions of polar molecules in the quantum regime
Ultracold polar molecules offer the possibility of exploring quantum gases
with interparticle interactions that are strong, long-range, and spatially
anisotropic. This is in stark contrast to the dilute gases of ultracold atoms,
which have isotropic and extremely short-range, or "contact", interactions. The
large electric dipole moment of polar molecules can be tuned with an external
electric field; this provides unique opportunities such as control of ultracold
chemical reactions, quantum information processing, and the realization of
novel quantum many-body systems. In spite of intense experimental efforts aimed
at observing the influence of dipoles on ultracold molecules, only recently
have sufficiently high densities been achieved. Here, we report the observation
of dipolar collisions in an ultracold molecular gas prepared close to quantum
degeneracy. For modest values of an applied electric field, we observe a
dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold
chemical reactions. We find that the loss rate has a steep power-law dependence
on the induced electric dipole moment, and we show that this dependence can be
understood with a relatively simple model based on quantum threshold laws for
scattering of fermionic polar molecules. We directly observe the spatial
anisotropy of the dipolar interaction as manifested in measurements of the
thermodynamics of the dipolar gas. These results demonstrate how the long-range
dipolar interaction can be used for electric-field control of chemical reaction
rates in an ultracold polar molecule gas. The large loss rates in an applied
electric field suggest that creating a long-lived ensemble of ultracold polar
molecules may require confinement in a two-dimensional trap geometry to
suppress the influence of the attractive dipolar interactions
Determination of the moments of the proton charge density
A global analysis of proton electric form factor experimental data from
Rosenbluth separation and low squared four-momentum transfer experiments is
discussed for the evaluation of the spatial moments of the proton charge
density based on the recently published integral method \cite{Hob20}. Specific
attention is paid to the evaluation of the systematic errors of the method,
particularly the sensitivity to the choice of the mathematical expression of
the form factor fitting function. Within this comprehensive analysis of proton
electric form factor data, the moments of the proton charge density are
determined for integer order moments, particularly: =0.682(02)(11)~fm, =0.797(10)(58)~fm, and =1.02(05)(31)~fm. This analysis leads to the
proton charge radius 0.8459(12)(76)~fm once relativistic
effects are taken into account.Comment: 10 pages, 3 figure
G Electronics and Data Acquisition (Forward-Angle Measurements)
The G parity-violation experiment at Jefferson Lab (Newport News, VA) is
designed to determine the contribution of strange/anti-strange quark pairs to
the intrinsic properties of the proton. In the forward-angle part of the
experiment, the asymmetry in the cross section was measured for
elastic scattering by counting the recoil protons corresponding to the two
beam-helicity states. Due to the high accuracy required on the asymmetry, the
G experiment was based on a custom experimental setup with its own
associated electronics and data acquisition (DAQ) system. Highly specialized
time-encoding electronics provided time-of-flight spectra for each detector for
each helicity state. More conventional electronics was used for monitoring
(mainly FastBus). The time-encoding electronics and the DAQ system have been
designed to handle events at a mean rate of 2 MHz per detector with low
deadtime and to minimize helicity-correlated systematic errors. In this paper,
we outline the general architecture and the main features of the electronics
and the DAQ system dedicated to G forward-angle measurements.Comment: 35 pages. 17 figures. This article is to be submitted to NIM section
A. It has been written with Latex using \documentclass{elsart}. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment In Press (2007
O18O and C18O observations of rho Oph A
Observations of the (N_J=1_1-1_0) ground state transition of O_2 with the
Odin satellite resulted in a about 5 sigma detection toward the dense core rho
Oph A. At the frequency of the line, 119 GHz, the Odin telescope has a beam
width of 10', larger than the size of the dense core, so that the precise
nature of the emitting source and its exact location and extent are unknown.
The current investigation is intended to remedy this. Telluric absorption makes
ground based O_2 observations essentially impossible and observations had to be
done from space. mm-wave telescopes on space platforms were necessarily small,
which resulted in large, several arcminutes wide, beam patterns. Although the
Earth's atmosphere is entirely opaque to low-lying O_2 transitions, it allows
ground based observations of the much rarer O18O in favourable conditions and
at much higher angular resolution with larger telescopes. In addition, rho Oph
A exhibits both multiple radial velocity systems and considerable velocity
gradients. Extensive mapping of the region in the proxy C18O (J=3-2) line can
be expected to help identify the O_2 source on the basis of its line shape and
Doppler velocity. Line opacities were determined from observations of optically
thin 13C18O (J=3-2) at selected positions. During several observing periods,
two C18O intensity maxima in rho Oph A were searched for in the 16O18O
(2_1-0_1) line at 234 GHz with the 12m APEX telescope. Our observations
resulted in an upper limit on the integrated O18O intensity of < 0.01 K km/s (3
sigma) into the 26.5" beam. We conclude that the source of observed O_2
emission is most likely confined to the central regions of the rho Oph A cloud.
In this limited area, implied O_2 abundances could thus be higher than
previously reported, by up to two orders of magnitude.Comment: 7 pages, 6 figures (5 colour), Astronomy & Astrophysic
Controlling the hyperfine state of rovibronic ground-state polar molecules
Ultracold molecules offer entirely new possibilities for the control of
quantum processes due to their rich internal structure. Recently, near quantum
degenerate gases of molecules have been prepared in their rovibronic ground
state. For future experiments, it is crucial to also control their hyperfine
state. Here, we report the preparation of a rovibronic ground state molecular
quantum gas in a single hyperfine state and in particular in the absolute
lowest quantum state. The demonstrated and presented scheme is general for
bialkali polar molecules and allows the preparation of molecules in a single
hyperfine state or in an arbitrary coherent superposition of hyperfine states.
The scheme relies on electric-dipole, two-photon microwave transitions through
rotationally excited states and makes use of electric nuclear quadrupole
interactions to transfer molecular population between different hyperfine
states
Constraining interactions mediated by axion-like particles with ultracold neutrons
We report a new limit on a possible short range spin-dependent interaction
from the precise measurement of the ratio of Larmor precession frequencies of
stored ultracold neutrons and Hg atoms confined in the same volume. The
measurement was performed in a 1 T vertical magnetic holding field
with the apparatus searching for a permanent electric dipole moment of the
neutron at the Paul Scherrer Institute. A possible coupling between freely
precessing polarized neutron spins and unpolarized nucleons of the wall
material can be investigated by searching for a tiny change of the precession
frequencies of neutron and mercury spins. Such a frequency change can be
interpreted as a consequence of a short range spin-dependent interaction that
could possibly be mediated by axions or axion-like particles. The interaction
strength is proportional to the CP violating product of scalar and pseudoscalar
coupling constants . Our result confirms limits from complementary
experiments with spin-polarized nuclei in a model-independent way. Limits from
other neutron experiments are improved by up to two orders of magnitude in the
interaction range of m
Electron shakeoff following the β+ decay of trapped 35Ar+ ions
The electron shakeoff of 35Cl atoms resulting from the β+ decay of 35Ar+ ions has been investigated using a Paul trap coupled to a recoil-ion spectrometer. The charge-state distribution of the recoiling daughter nuclei is compared to theoretical calculations accounting for shakeoff and Auger processes. The calculations are in excellent agreement with the experimental results and enable one to identify the ionization reaction routes leading to the formation of all charge states.D.R. acknowledges support from the Spanish ministry of Economy and Competitiveness under the project FPA2010-14803 and the action AIC10-D000562
- …