1,640 research outputs found

    Signatures of Classical Periodic Orbits on a Smooth Quantum System

    Full text link
    Gutzwiller's trace formula and Bogomolny's formula are applied to a non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic oscillator. These semiclassical theories reproduce well the exact quantal results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb

    Asymptotic and measured large frequency separations

    Full text link
    With the space-borne missions CoRoT and Kepler, a large amount of asteroseismic data is now available. So-called global oscillation parameters are inferred to characterize the large sets of stars, to perform ensemble asteroseismology, and to derive scaling relations. The mean large separation is such a key parameter. It is therefore crucial to measure it with the highest accuracy. As the conditions of measurement of the large separation do not coincide with its theoretical definition, we revisit the asymptotic expressions used for analysing the observed oscillation spectra. Then, we examine the consequence of the difference between the observed and asymptotic values of the mean large separation. The analysis is focused on radial modes. We use series of radial-mode frequencies to compare the asymptotic and observational values of the large separation. We propose a simple formulation to correct the observed value of the large separation and then derive its asymptotic counterpart. We prove that, apart from glitches due to stellar structure discontinuities, the asymptotic expansion is valid from main-sequence stars to red giants. Our model shows that the asymptotic offset is close to 1/4, as in the theoretical development. High-quality solar-like oscillation spectra derived from precise photometric measurements are definitely better described with the second-order asymptotic expansion. The second-order term is responsible for the curvature observed in the \'echelle diagrams used for analysing the oscillation spectra and this curvature is responsible for the difference between the observed and asymptotic values of the large separation. Taking it into account yields a revision of the scaling relations providing more accurate asteroseismic estimates of the stellar mass and radius.Comment: accepted in A&

    Ensembles of probability estimation trees for customer churn prediction

    Get PDF
    Customer churn prediction is one of the most, important elements tents of a company's Customer Relationship Management, (CRM) strategy In tins study, two strategies are investigated to increase the lift. performance of ensemble classification models, i.e (1) using probability estimation trees (PETs) instead of standard decision trees as base classifiers; and (n) implementing alternative fusion rules based on lift weights lot the combination of ensemble member's outputs Experiments ale conducted lot font popular ensemble strategics on five real-life chin n data sets In general, the results demonstrate how lift performance can be substantially improved by using alternative base classifiers and fusion tides However: the effect vanes lot the (Idol cut ensemble strategies lit particular, the results indicate an increase of lift performance of (1) Bagging by implementing C4 4 base classifiets. (n) the Random Subspace Method (RSM) by using lift-weighted fusion rules, and (in) AdaBoost, by implementing both

    Generalized r-Modes of the Maclaurin Spheroids

    Get PDF
    Analytical solutions are presented for a class of generalized r-modes of rigidly rotating uniform density stars---the Maclaurin spheroids---with arbitrary values of the angular velocity. Our analysis is based on the work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real representations of the r-modes. The class of generalized r-modes is much larger than the previously studied `classical' r-modes. In particular, for each l and m we find l-m (or l-1 for the m=0 case) distinct r-modes. Many of these previously unstudied r-modes (about 30% of those examined) are subject to a secular instability driven by gravitational radiation. The eigenfunctions of the `classical' r-modes, the l=m+1 case here, are found to have particularly simple analytical representations. These r-modes provide an interesting mathematical example of solutions to a hyperbolic eigenvalue problem.Comment: 12 pages, 3 figures; minor changes and additions as will appear in the version to be published in Physical Review D, January 199

    Relativistic r-modes in Slowly Rotating Neutron Stars: Numerical Analysis in the Cowling Approximation

    Get PDF
    We investigate the properties of relativistic rr-modes of slowly rotating neutron stars by using a relativistic version of the Cowling approximation. In our formalism, we take into account the influence of the Coriolis like force on the stellar oscillations, but ignore the effects of the centrifugal like force. For three neutron star models, we calculated the fundamental rr-modes with l=m=2l'=m=2 and 3. We found that the oscillation frequency σˉ\bar\sigma of the fundamental rr-mode is in a good approximation given by σˉκ0Ω\bar\sigma\approx \kappa_0 \Omega, where σˉ\bar\sigma is defined in the corotating frame at the spatial infinity, and Ω\Omega is the angular frequency of rotation of the star. The proportional coefficient κ0\kappa_0 is only weakly dependent on Ω\Omega, but it strongly depends on the relativistic parameter GM/c2RGM/c^2R, where MM and RR are the mass and the radius of the star. All the fundamental rr-modes with l=ml'=m computed in this study are discrete modes with distinct regular eigenfunctions, and they all fall in the continuous part of the frequency spectrum associated with Kojima's equation (Kojima 1998). These relativistic rr-modes are obtained by including the effects of rotation higher than the first order of Ω\Omega so that the buoyant force plays a role, the situation of which is quite similar to that for the Newtonian rr-modes.Comment: 22 pages, 8 figures, accepted for publication in Ap

    Machine learning for targeted display advertising: Transfer learning in action

    Get PDF
    This paper presents a detailed discussion of problem formulation and data representation issues in the design, deployment, and operation of a massive-scale machine learning system for targeted display advertising. Notably, the machine learning system itself is deployed and has been in continual use for years, for thousands of advertising campaigns (in contrast to simply having the models from the system be deployed). In this application, acquiring sufficient data for training from the ideal sampling distribution is prohibitively expensive. Instead, data are drawn from surrogate domains and learning tasks, and then transferred to the target task. We present the design of this multistage transfer learning system, highlighting the problem formulation aspects. We then present a detailed experimental evaluation, showing that the different transfer stages indeed each add value. We next present production results across a variety of advertising clients from a variety of industries, illustrating the performance of the system in use. We close the paper with a collection of lessons learned from the work over half a decade on this complex, deployed, and broadly used machine learning system.Statistics Working Papers Serie

    Open issues in probing interiors of solar-like oscillating main sequence stars: 2. Diversity in the HR diagram

    Full text link
    We review some major open issues in the current modelling of low and intermediate mass, main sequence stars based on seismological studies. The solar case was discussed in a companion paper, here several issues specific to other stars than the Sun are illustrated with a few stars observed with CoRoT and expectations from Kepler data.Comment: GONG 2010 - SoHO 24, A new era of seismology of the Sun and solar-like stars, To be published in the Journal of Physics: Conference Series (JPCS

    Bures distance between two displaced thermal states

    Full text link
    The Bures distance between two displaced thermal states and the corresponding geometric quantities (statistical metric, volume element, scalar curvature) are computed. Under nonunitary (dissipative) dynamics, the statistical distance shows the same general features previously reported in the literature by Braunstein and Milburn for two--state systems. The scalar curvature turns out to have new interesting properties when compared to the curvature associated with squeezed thermal states.Comment: 3 pages, RevTeX, no figure
    corecore