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Abstract

Customer churn prediction is one of the most imgudrtelements of any Customer Relationship
Management (CRM) strategy. In this study, a nuntbestrategies are investigated to increase the lift
of ensemble classification models. In order toéase lift performance, two elements of a number of
well-known ensemble strategies are altered: (i) gb&ential of using probability estimation trees
(PETs) instead of standard decision trees as bassifeers is investigated and (ii)) a number of
alternative fusion rules for the combination ofemble member’s outputs are proposed and compared.
Experiments are conducted for four popular ensersbiegies (Bagging, the Random Subspace
Method, SubBag and AdaBoost) on five real-life chdata sets. The results demonstrate the value of
using PETs over standard decision trees in ordéndi@ase lift. Overall, the effect of the proposed
strategies heavily depends on the chosen enselgblétfam in which they are implemented.
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1. Introduction

In today’s business environment, an effective QustoRelationship Management strategy is of the
foremost importance [1]. One of the most importaspects of CRM is customer retention, i.e. the
prevention of customers from ceasing to buy praglactservices and leaving the company. One often-
used strategy in this context is to identify theeptial churners in an early stage, and to treaseh
customers accordingly by offering adapted incestiwveorder to re-establish their relationship with
the company [2]. This practice is generally pursimechurn prediction.

In churn prediction, information from customersttigavailable in the company database is used to
determine their proneness to attrite. Relevant iptigd features typically include historical
transactions from the customer with the compangnatgaphic information of the customer and so on.
Data mining techniques, and more specifically, sifamtion algorithms, are then deployed to
generalize the relationship that exists betweenséomer’s characteristics, and his or her prolghbili
to churn [3]. Once built, these models can be usqutedict the future behavior of customers and to
deliver targeting information for churn-preventimgrketing campaigns.

In a churn-prediction model, accuracy is extremelportant [4]. In this study, the use of ensemble
learning for churn prediction is considered. Apations of ensemble classifiers to churn prediction
include Random Forests [5], AdaBoost [6], AdaCad$t Bagging [8], Stochastic Gradient Boosting
[9], ensembles of Artificial Neural Networks [4] dthe multi-classifier class-combiner technique] [10
These studies all demonstrate the beneficial impcsing ensemble classifiers over single classfi
for classification performance in the context ofichprediction.

An often-used performance criterion in churn pradicis lift (e.g. [8, 9, 11]). Lift measures how
many times the classification model improves thentdication of potential churners in the selection
over random guessing. A popular criterion in resiean churn is top-decile lift, where the top 10
percent of customers with the highest probabiliieschurn are considered. In this study, two
strategies to improve lift performance of five wiellown ensemble classifiers are presented. A first
strategy involves using C4.4 probability estimatiees (PETs) [12] as base classifier in the enkemb
classifiers instead of regular C4.5 [13] decisiomes. Probability estimation trees are designed to
generate better posterior probabilities than regdégision trees. They have been shown to provide
better ranking capabilities than regular decisimed, and can hence be expected to improve lift
performance when used in ensembles. A second gtraigolves altering the fusion rules that are
used to combine the predictions of individual ensienmember classifiers into aggregate predictions.
A comparison is made between the standard fusies used in ensemble methods, as majority voting
or average aggregation, to a weighted approachdbaselift performance measures of member
classifiers. In an experimental validation, theseffof both strategies will be investigated for giag
[14], the Random Subspace Method (RSM; [15]) andBabst [16]. Experiments are conducted for
five real-life churn data sets from various Eurapeampanies, belonging to different sectors. Ailso,
addition to top-decile lift, a range of alternatsglection percentages is considered for the cdlonl

of lift measures.

The paper is organized as follows. In Section 2pegrview is presented of probability estimation
trees, ensemble classification and the ensembdsifitxs considered in this study, and lift. Sett®
includes an experimental validation of the propoa#gbrithm variations. This section presents an
overview of the churn data set selection, an oeervof the conditions for the experimental
comparison, and the results. In a final sectiotgreclusion is formulated, and limitations to thedst
and directions for future research are provided.

2. Methodology

2.1 Probability estimation trees
Tree induction algorithms, such as C4.5 [13], CART] and CHAID [18] are primarily designed to
generate ‘crisp’ classifications: they map an ins&g based on its values on a set of features, to



precisely one class. However, many applicationsh sis churn prediction benefit from the availapilit

of an estimation of confidence in a class predigtisuch as a class membership probability. An
alternative to standard classification trees s @gpect are probability estimation trees (PETa) th
estimate class membership probabilities. Many PFtahv& been introduced in literature [12, 19-21]. In
its most basic form, maximum likelihood probabiliggtimates are generated as follows. Denote a
decision tree that represent€&lass classification problem. At the end leafdlasscOC there areN
instances belonging t€ different classes, anll instances belonging to class The maximum

likelihood posterior class membership probability tlassc is then equal te:% [22]. It has been

shown that PETs based on this rule often perfororlpat estimating class membership probabilities
[12, 23]. In [12], Provost and Domingos identifynamber of reasons for this. They argue that
maximum likelihood probabilities are potentiallyghly inaccurate, especially if the number of
training instances at an end leaf is small. Furtthezy argue that pruning, aimed at constructingllm
but accurate trees, results in lower quality oinested class probabilities. In order to generatéebe
PETSs, they suggest C4.4, an adapted version aC4hg tree-building algorithm. In C4.4, maximum-
likelihood estimates are smoothed by using thea@ptorrection, which adjusts probability estimates

in order to make them less extreme. The Lapladmats used for C4.4 is given bﬁ:—é Further, in

C4.4, no pruning is applied, and ‘collapsing’, @@®lary pruning strategy inherent to C4.5, is no
longer performed.

In [12], Provost and Domingos applied Bagging toa4CBETs and demonstrated in their experiments
that an ensemble of PETs substantially improved Al¢@ormance for a majority of the examined

data sets. However, they did not consider altereatnsemble strategies. Moreover, the lift

performance of PETs and particularly ensemblesEfsPhas, to the best of our knowledge, never
been analyzed in the context of customer churnigired.

2.2 Ensemble classification

Ensemble classification has been a popular fieldeséarch in recent years. Multiple studies have
demonstrated the beneficial effect of combining ynalassification models into aggregated ensemble
classifiers on classification accuracy (e.g., [B2While several algorithms have been proposed in
literature, many are inspired by two classical emde strategies: Bagging [14] and Boosting [27]. In
Bagging (Bootstrap aggregating), each member fiassn the ensemble is trained on a bootstrap
sample (i.e., a random sample taken with replacear with the same size) of the original training
data. Member outputs are aggregated using majwting (also known as plurality voting): instances
are assigned the class that is most frequentlgraagdiby the ensemble members [14]. Bagging can
introduce a significance improvement in accuracyaasesult of a reduction of variance versus
individual decision trees. The most well-known kougalgorithm is AdaBoost [16, 27]. In AdaBoost,
instances that are mislabeled receive higher welghihg consecutive training iterations and hence,
the classifier is forced to concentrate on hargridict instances. A related method to Baggindpés t
Random Subspace Method (RSM, [15]), also knownt@ibate bagging [28]. In RSM, a random
feature subset is sampled for the training of esertble member.

An important element of any ensemble classifieoddgm is the fusion rule, used to aggregate
ensemble member’s outputs to ensemble predictdreategorization is often made between fusion
rules for label outputs and fusion rules for combms outputs [22]. A well-studied and simple
combiner is plurality voting, as described earlieithe case of Bagging. RSM and Random Forest
implement average aggregation (sometimes refeoemstmean combination rule), which takes the
average of the ensemble members’ outputs. For inethods, weights can be assigned to ensemble
members which score higher on a performance metritioice to obtain weighted majority voting or
weighted average aggregation [22]. Training erabes are often used as weights. In this studyptop-
th percentile and derivations are introduced aghisifor weighted average aggregation fusion rules.



2.3 Lift

In the context of churn prediction, lift focusestbie segment of customers with the highest rigskdo
company, i.e. customers with the highest probghititchurn. The definition of lift depends upon the
percentage of riskiest customers one is considéoing retention campaign. Suppose that a company
is interested in the top-th percentile of most likely churners, based oedjted churn probabilities.
The topp-th percentile lift then equals the ratio of thegortion of churners in the tgpth percentile

of ordered posterior churn probabilities,, , to the churn rate in the total customer poputatio ;

ﬂp%

top p-th percentile lift = . As the proportion of customers that a companyble and willing to

target depends on the specific content, the expatsnwill calculate lift performance for different
percentiles. The concept of directly optimizing tifemeasure is similar to the one proposed in].[29
The authors maximize the number of purchases avem gnailing depth (used as a constraint) for
database marketing.

3. Experimental validation
3.1 Data

To investigate the suitability of probability estition trees as base classifiers in ensemble dkrssif
for increasing lift in churn prediction, this studgnsiders five real-life churn data sets fromatit
business contexts and for different products ovises. The characteristics of these data sets are
provided in Table 1.

Table1: data set description

Data set
Instances  Features Minority class percentage
Bankl 23,562 236 3.52
Bank2 42,783 164 11.14
Supermarket chain 32,371 46 25.15
DIY chain 3,827 15 28.14
Bank3 20,456 137 5.99

As shown in Table 1, churn data sets are typiadigracterized by high dimensionality, both in terms
of number of features and number of instances. Herassue is the class imbalance of the data. Churn
is usually a rare event [30]. Many techniques hlagen proposed to deal with class imbalance in
churn prediction [8, 9]. In [31], the effect of skaimbalance on a number of performance metrics is
analyzed for probability estimation trees. Thisdstundicates the importance of an appropriate
treatment for the problem of class imbalance fer dnality of probability estimates of PETs. While
the authors suggest a wrapper method to deternmirgptimal sampling level of undersampling, in
this study, majority class instances in the traindata sets are undersampled in order to obtain
balanced class distributions.

3.2 Experimental settings

In this study, we consider three ensemble classifiBagging, RSM and AdaBoost. C4.4 and C4.5
base classifiers are implemented using the J48ifitas which is a C4.5 implementation, availabie i
WEKA [32]. C4.4 is implemented as in [12]. BaggiRSM, AdaBoost and the proposed variations
are implemented in MATLAB. Ensemble sizes are sel@0 constituent ensemble members. One
final parameter is the random feature subset sie®EM. This parameter is set equal to the square
root of the number of features in the respectia dats, as suggested in [25] and [33].

A first comparison involves the use of C4.4 PETssue standard C4.5 classification trees as base
classifiers in ensemble classifiers. In a seconchpasison, the influence of the introduction of
alternative fusion rules based on fegh percentile lift is investigated. Throughout themparisons,
different lift definitions are considered, witlp ranging from 50 to 5. More specifically,



pO{ 50403020105, p,} where p, is the (rounded) actual churn rate as observetdrtraining data

as provided in Table 1. This additional percentdpresents the plausible strategy of companies to
target as many potential churners as they expenntrge based on past experience.

Weighted average aggregation is applied using aghtee (i) topp-th percentile lift, further referred
lift , —min(lift ,)
E min(ift,,)
inspired by fact that a lift of one implies a modt outperforming random guessing. Only if the
classifier outperforms random guessingifs, -1) a positive weight for the respective classifier. |

alternative (iii), the minimal observed lift is s@s a minimum threshold for classifiers to receive
positive weight. Finally, in the case of Baggingerage aggregation is added as an additional fusion
rule to investigate its value for lift performanmeer plurality voting.

to aslift,, (i) (lift, -1 ,, and (iii) rescaledift,, defined a . Alternative (i) is

Reported results are averaged over a 5x2-fold araliatiort. Within a 2-fold cross-validation, the
training set is randomly split into two parts; fivst part is used for model training, while thesed
part is used for model validation and vice versa.

3.3 Results

Results are reported as counts of wins, lossegiaadWhen a reference algorithm performs better
(worse) in terms of lift performance, a win (loss)yegistered, while equal lift performance betwaen
reference and a benchmark algorithm results ie.altbles 2 to 4 provide wins-losses-ties counts fo
variations based on Bagging, RSM and AdaBoost.

Table 2: Experimental resultsfor Bagging: wins-losses-ties
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Algorithm

Bagging (C4.5 + averaging) - 1/1/32 1/2/32 3/0/32 0/10/25 0/9/26 0/11/24 0/9/26
Bagging (C4.5 + lift weights) Y32 - 2/132 3/0/32 0/9/26 0/9/26 0/L0/25 0/9/26
Bagging (C4.5+ (lift-1) weights) 20132 12132 - 20033 0/9/26 0/9/26 0/9/26 0/8/27
Bagging (C4.5 + rescaled lift weights) 0/3/32 0/3/32 0/2/33 - 0/11/24 0/10/25 0/10/25 0/9/26
Bagging (C4.4 + averaging) 10/0/25 ©9/0/26 9/0/26 11/0/24 -  0/0/35 0/0/35 5/1/29
Bagging (C4.4 + lift weights) 0/0/26 9/0/26 9/0/26 10/0/25 0/0/35 - 0/0/33 4/2/29
Bagging (C4.4 + (lift-1) weights) 11/0/24 10/0/25 9/0/26 10/0/25 0/0/35 0/0/33 - 3/2/30

Bagging (C4.4 + rescaled lift weights) o006 o/0/26 8/0/27 9/0/26 1/5/29 2/4/29  2/3/30




Table 3: Experimental resultsfor RSM: wins-losses-ties
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RSM (C4.5) - 0/8/27 0/14/21 0/14/21 0/2/33 0/2/33 0/4/31 0/4/31
RSM (C4.5 + lift weights) 8/0/27 - 1/7/27 1/6/28 0/1/34 0/0/35 0/1/34 0/1/34
RSM (C4.5+ (lift-1) weights) 140021 71127 - 3/0/32  2/0/33 0/1/34 0/1/34 0/1/34
RSM (C4.5 + rescaled lift weights) ~ 14/0/21 6/1/28 0/3/32 - 1/1/33 0/2/33 0/1/34 0/0/35
RSM (C4.4) 2/0/33 1/0/34 0/2/33 1/1/33 -  1/15/19 0/14/21 0/15/20
RSV (C4.4 + lift weights) 2/0/33 0/0/35 1/0/34 2/0/33 15/1/19 -  0/10/25 1/12/22
RSM (C4.4 + (lift-1) weights) 4/0/31 1/0/34 1/0/34 1/0/34 14/0/21 10/0/25 - 411729
RSM (C4.4 + rescaled lift weights) ~ 4/0/31 1/0/34 1/0/34 0/0/35 15/0/20 12/1/22 1/4/29 -
Table4: Experimental resultsfor SubBag: wins-losses-ties
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Algorithm 3 8 & & & & & &
SubBag (C4.5) - 1/4/30 2/5/28 1/4/30 2/0/33 2/3/30 4/3/28 3/3/29
SubBag (C4.5 + lift weights) 4/1/30 - 1/6/28 1/4/30 2/0/33 2/1/32 3/4/28 3/3/29
SubBag (C4.5+ (lift-1) weights) 5/2/28 6/1/28 -  0/0/31 2/0/33 2/0/33 2/3/30 2/1/32
SubBag (C4.5 + rescaled lift weights) ~ 4/1/30 4/1/30 0/0/31 - 2/0/33 2/0/33 2/3/30 2/1/32
SubBag (C4.4) 0/2/33 0/2/33 0/2/33 0/2/33 -  0/6/29 0/6/29 0/6/29
SubBag (C4.4 + lift weights) 3/2/30 1/2/32 0/2/33 0/2/33 6/0/29 -  1/4/30 1/3/31
SubBag (C4.4 + (lift-1) weights) 3/4/28 4/3/28 3/2/30 3/2/30 6/0/29 4/1/30 -  2/0/26
SubBag (C4.4 + rescaled lift weights)  3/3/29 3/3/29 1/2/32 1/2/32 6/0/29 3/1/31 0/2/26 -

Table5: Experimental

resultsfor AdaBoost: wins-losses-ties

Algorithm

|IAdaBoost (C4.5)

IAdaBoost (C4.5 + lift weights)

IAdaBoost (C4.5+ (lift-1) weights)

IAdaBoost (C4.5 + rescaled lift weights)

|IAdaBoost (C4.4)

IAdaBoost (C4.4 + lift weights)

IAdaBoost (C4.4 + (lift-1) weights)

IAdaBoost (C4.4 + rescaled lift weights)




AdaBoost (C4.5) - 5/5/25 11/1/23 13/2/20 3/23/9 0/21/14 0/21/14 0/21/14

AdaBoost (C4.5 + lift weights) 5/5/25 - 18/0/17 20/0/15 4/24/7 1/24/10 2/24/9 2/24/9
AdaBoost (C4.5+ (lift-1) weights) 1/11/23 0/18/17 -  15/0/20 1/25/9 0/24/11 0/24/11 0/24/11
AdaBoost (C4.5 + rescaled lift weights) ~ 2/13/20 0/20/15 0/15/20 - 2/25/8 1/25/9 0/25/10 0/25/10
AdaBoost (C4.4) 23/3/9 24/4/7 25/1/9 25/2/8 - 3/12/20 3/11/21 3/11/21
AdaBoost (C4.4 + lift weights) 21/0/14 24/1/10 24/0/11 25/1/9 12/3120 - 1/0/34  1/0/34
AdaBoost (C4.4 + (lift-1) weights) 21/0/14 24/2/9 24/0/11 25/0/10 11/3/21 0/1/34 - 0/0/23

AdaBoost (C4.4 + rescaled lift weights) 21/0/14 24/2/9 24/0/11 25/0/10 11/3/21 0/1/34 0/0/23

A first set of observations is derived for the Baggvariations. The results in tables indicate tbe
lift performance of Bagging can be increased byagpg standard C4.5 decision trees with C4.4
PETSs, and confirm findings in [12]. The infl

Table 3 presents results for the Random SubspadhoblleHere different results are found. The
introduction of C4.4 as base classifier in RSM doesimprove performance over RSM with C4.5
base classifiers. However, fusion rules based gm pgdh percentile lift invoke substantial

improvement of lift performance over average aggtieg for RSM with C4.4 base classifiers. All
lift-based fusion rules demonstrate equivalentqreriince.

Finally, Table 4 shows wins, losses and ties basedxperimental results for AdaBoost. Here, both
modified base learners and adapted fusion rulesibate to an improvement of lift performance. The
introduction of C4.4 base learners generates aedarkprovement over using C4.5 base classifiers.
The use of lift-based fusion rules invokes a furtilerease. The best performance is observed for
regular lift weights.

Conclusion

Customer retention and churn prediction are impmbrtelements of Customer Relationship
Management (CRM) strategies. An often-used evalnatietric for churn prediction models is lift,
which measures the degree to which the model ierbigt identifying the customers most likely to
churn, over random guessing. This study investgyateategies to improve lift performance of three
well-known ensemble algorithms. The first is the@tibn of C4.4 probability estimation trees (PETS)
as base classifiers, instead of regular C4.5 €leation trees. Probability estimation trees are
especially designed to generate class membersbipapilities of higher quality. C4.4 trees are a
variation of C4.5, implementing Laplace correctiand avoiding pruning strategies. The second
strategy involves replacing standard fusion rutgsshsemble members’ outputs by weighted average
aggregation, using three alternative lift-basedgivesets. Both strategies are applied to three- well
known ensemble algorithms: Bagging, the Random [Sades Method (RSM) and AdaBoost.
Experiments on five real-life churn prediction datds are conducted to compare C4.5 and C4.4 trees
as base classifiers, and original versus the peapfission rules.

The results indicate variation in the effect of pfreposed strategies on lift performance depending
the nature of the ensemble algorithm: (i) Baggingaty benefits from adopting C4.4 base classifiers
and average aggregation as a fusion rule. Liftdbaseighted averaging does not substantially
improve lift performance; (ii) while RSM does nariefit from adopting C4.4 trees as base classifiers
weighted average aggregation is a viable strategyintrease lift performance; and (i) Lift
performance of AdaBoost can be substantially imgdotay implementing C4.4 base classifiers and
weighted average aggregation based on lift. Ovetiadlre is no clear dominance of any of the
proposed lift-based weights.

Future work includes the adoption of different P&§orithms and alternative ensemble strategies,
such as the recently proposed Rotation Forests §2@] application of error decomposition and
techniques to gain insight in the accuracy-divgrside-off to gain insight in the specific condits
that need to be fulfilled to successfully enseniti's for increasing lift performance.
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