143 research outputs found
Genetic structure of the European hedgehog (Erinaceus europaeus)Â in Denmark
OBJECTIVES:Low genetic diversity can lead to reduced average fitness in a population or even extinction. Preserving genetic connectivity across fragmented landscapes is therefore vital to counteract the negative consequences of genetic drift and inbreeding. This study aimed to assess the genetic composition and consequently the conservation status of a nationwide sample of European hedgehogs (Erinaceus europaeus) in Denmark. METHODS:We applied an adaptation of the genotyping by sequencing (GBS) technique to 178 individuals from six geographically distinct populations. We used a Bayesian clustering method to subdivide individuals into genetically distinct populations. We estimated individual observed (iHO), observed (HO), and unbiased expected (uHE) heterozygosity, inbreeding coefficient (FIS), percentage of polymorphic loci (P%) and tested for deviations from Hardy-Weinberg equilibrium (HWE). We used linear models to test for potential anthropogenic effects on the genetic variability of hedgehogs with iHO, uHE, P% and FIS as response variables, and assessed the demographic history of the population. RESULTS:The Danish hedgehog population is composed of three genetic clusters. We found a mean P% of 54.44-94.71, a mean uHE of 0.126-0.318 and a mean HO of 0.124-0.293 in the six populations. The FIS was found to be significantly positive for three of the six populations. We detected a large heterogeneity of iHO values within populations, which can be due to inbreeding and/or fragmentation. FIS values decreased with increasing farmland density, but there was no significant association with human population or road density. CONCLUSIONS:We found a low level of genetic variability and evidence for genetic substructure and low effective population size, which are all consequences of habitat fragmentation. We failed to detect signs of a recent population bottleneck or population increase or decline. However, because the test only identifies recent changes in population size, we cannot reject the possibility of a longer-term decline in the Danish hedgehog population
Barrett’s esophagus: results from an Italian cohort with tight endoscopic surveillance
Background and aim: Barrett’s Esophagus represent a condition that predisposes to the development of esophageal adenocarcinoma. The aim of the present study was to analyze the demographic and clinical characteristics of patients with BE, to establish the presence of risk factors for this condition, and to determine the frequency of dysplastic lesions as well as the evolution towards adenocarcinoma under tight endoscopic control. Methods: In this study, we retrospectively collected and analyzed data from a cohort of patients with Barrett’s Esophagus identified through endoscopic records of ULSS7 in Northern Italy, who underwent upper esophago-gastroduodenoscopy over a 10-year period from July 2008 to December 2020. Results: A total of 264 patients were identified as having BE and included in the study. Mean follow-up was 6.7 years (range: 3 months-13 years). Demographic characteristics of the study population included mean age of 62.7 years (range 33-90 years), with 62.5% of the study population being aged 60 or older, and a male predominance. Females were significantly older than males (65.7 years, range 37-90 vs 61.9 years, range 33-87, p=0.043, respectively). Conclusions: The present study confirms the importance of tight endoscopic control in the management of BE, favoring early detection of BE degeneration towards high grade dysplasia or adenocarcinoma. In a subset of patients with high-risk factors including male sex, cigarette smoking and heavy alcohol intake, it may be worthwhile to consider endoscopic control over time in order to detect the development of BE. (www.actabiomedica.it)
Metastatic gastric cancer presenting with shoulder-hand syndrome: a case report
<p>Abstract</p> <p>Introduction</p> <p>Shoulder-hand syndrome is a relatively rare clinical entity classified as a complex regional pain syndrome type 1 and consisting essentially of a painful 'frozen shoulder' with disability, swelling, vasomotor or dystrophic changes in the homolateral hand. The pathophysiology is not completely clear but a predominant 'sympathetic' factor affecting the neural and vascular supply to the affected parts seems to be involved. Shoulder-hand syndrome has been related to many surgical, orthopedic, neurological and medical conditions; it is more often seen after myocardial infarction, hemiplegia and painful conditions of neck and shoulder, such as trauma, tumors, cervical discogenic or intraforaminal diseases and shoulder calcific tendinopathy, but has also been associated with herpetic infections, brain and lung tumors, thoracoplasty and drugs including phenobarbitone and isoniazid. The diagnosis of shoulder-hand syndrome is primarily clinical, but imaging studies, particularly bone scintigraphy, may be useful to exclude other disorders.</p> <p>Case presentation</p> <p>We report the case of a 67-year-old woman who presented with shoulder-hand syndrome as the initial manifestation of gastric cancer which had metastasized to bone.</p> <p>Conclusion</p> <p>Wider investigations are advisable in patients with atypical shoulder-hand syndrome. To the best of the authors' knowledge this is the first case of shoulder-hand syndrome associated with metastatic gastric cancer.</p
The first search for bosonic super-WIMPs with masses up to 1 MeV/c with GERDA
We present the first search for bosonic super-WIMPs as keV-scale dark matter
candidates performed with the GERDA experiment. GERDA is a neutrinoless
double-beta decay experiment which operates high-purity germanium detectors
enriched in Ge in an ultra-low background environment at the Laboratori
Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for
pseudoscalar and vector particles in the mass region from 60 keV/c to 1
MeV/c. No evidence for a dark matter signal was observed, and the most
stringent constraints on the couplings of super-WIMPs with masses above 120
keV/c have been set. As an example, at a mass of 150 keV/c the most
stringent direct limits on the dimensionless couplings of axion-like particles
and dark photons to electrons of and
at 90% credible interval,
respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list
of authors, updated ref. [21
Economic Thought of Vincent de Gournay (4)
Ongoing climate change is predicted to affect the distribution and abundance of aquatic ectotherms owing to increasing constraints on organismal physiology, in particular involving the metabolic scope (MS) available for performance and fitness. The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis prescribes MS as an overarching benchmark for fitness-related performance and assumes that any anaerobic contribution within the MS is insignificant. The MS is typically derived from respirometry by subtracting standard metabolic rate from the maximal metabolic rate; however, the methodology rarely accounts for anaerobic metabolism within the MS. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), this study tested for trade-offs (i) between aerobic and anaerobic components of locomotor performance; and (ii) between the corresponding components of the MS. Data collection involved measuring oxygen consumption rate at increasing swimming speeds, using the gait transition from steady to unsteady (burst-assisted) swimming to detect the onset of anaerobic metabolism. Results provided evidence of the locomotor performance trade-off, but only in S. aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic performance. Our results suggest that without accounting for anaerobic metabolism within the MS, studies involving the OCLTT hypothesis could overestimate the metabolic scope available for sustainable activities and the ability of individuals and species to cope with climate change
A Meta-Analysis of Local Adaptation in Plants
Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption) only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals) than for small populations (<1000 flowering individuals) for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments
Developmental Stability Covaries with Genome-Wide and Single-Locus Heterozygosity in House Sparrows
Fluctuating asymmetry (FA), a measure of developmental instability, has been hypothesized to increase with genetic stress. Despite numerous studies providing empirical evidence for associations between FA and genome-wide properties such as multi-locus heterozygosity, support for single-locus effects remains scant. Here we test if, and to what extent, FA co-varies with single- and multilocus markers of genetic diversity in house sparrow (Passer domesticus) populations along an urban gradient. In line with theoretical expectations, FA was inversely correlated with genetic diversity estimated at genome level. However, this relationship was largely driven by variation at a single key locus. Contrary to our expectations, relationships between FA and genetic diversity were not stronger in individuals from urban populations that experience higher nutritional stress. We conclude that loss of genetic diversity adversely affects developmental stability in P. domesticus, and more generally, that the molecular basis of developmental stability may involve complex interactions between local and genome-wide effects. Further study on the relative effects of single-locus and genome-wide effects on the developmental stability of populations with different genetic properties is therefore needed
Characterization of inverted coaxial 76 Ge detectors in GERDA for future double- β decay experiments
Neutrinoless double-β decay of 76Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double-β decay of 76Ge (Qββ = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg⋅year, the background index after analysis cuts is measured to be 4.9+7.3−3.4×10−4 counts/(keV⋅kg⋅year) around Qββ. This work confirms the feasibility of IC detectors for the next-generation experiment Legend
Liquid argon light collection and veto modeling in GERDA Phase II
The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition
- …