20,197 research outputs found

    Entanglement control in hybrid optomechanical systems

    Get PDF
    We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.Comment: Published versio

    Simultaneous surface acoustic wave and surface plasmon resonance measurements: electrodeposition and biological interactions monitoring

    Full text link
    We present results from an instrument combining surface acoustic wave (SAW) propagation and surface plasmon resonance (SPR) measurements. The objective is to use two independent methods, the former based on adsorbed mass change measurements and the latter on surface dielectric properties variations, to identify physical properties of protein layers, and more specifically their water content. We display mass sensitivity calibration curves using electrodeposition of copper leading to a sensitivity in liquid of 150±15\pm15 cm2/gcm^2/g for the Love mode device used here, and the application to monitoring biological processes. The extraction of protein layer thickness and protein to water content ratio is also presented for S-layer proteins under investigation. We obtain respectively 4.7±\pm0.7 nm and 75±\pm15%.Comment: 13 pages, 4 figure

    Multi-sensor system using plastic optical fibers for intrinsically safe level measurements

    Get PDF
    A system for measuring liquid level in multiple tanks using optical fibe technology has been developed. Oil fiel service industry or any sector requiring liquid level measurements in flammabl atmospheres can be benefite from this intrinsically safe technology. The device used a single lens for the emitting and receiving fibe and it is based on amplitude variations as a function of the liquid distance and not in time of fligh or phase detection. Being the firs fiber-opti liquid level sensor with those characteristics for long ranges (>200 cm). A simple model to describe their behavior has been derived and tested on two prototypes. A Monte-Carlo method is used to fi the experimental data and obtain the model parameters. High accuracy between experimental data and fitte curve is obtained. The prototypes have a good linearity, better than 1.5% FS (full scale). Sensor heads are made of plastic optical fiber (POF) that are easy to handle, flexible and economical. They are excited by 650 nm lasers, housed in ST-connectors to obtain compact and rough prototypes. Optical multiplexing is used to increase the measuring safety area. Frequency division multiplexing is used to address each sensor head. A discussion about the influenc of tilts and aberrations is also included.Publicad

    Normal form decomposition for Gaussian-to-Gaussian superoperators

    Full text link
    In this paper we explore the set of linear maps sending the set of quantum Gaussian states into itself. These maps are in general not positive, a feature which can be exploited as a test to check whether a given quantum state belongs to the convex hull of Gaussian states (if one of the considered maps sends it into a non positive operator, the above state is certified not to belong to the set). Generalizing a result known to be valid under the assumption of complete positivity, we provide a characterization of these Gaussian-to-Gaussian (not necessarily positive) superoperators in terms of their action on the characteristic function of the inputs. For the special case of one-mode mappings we also show that any Gaussian-to-Gaussian superoperator can be expressed as a concatenation of a phase-space dilatation, followed by the action of a completely positive Gaussian channel, possibly composed with a transposition. While a similar decomposition is shown to fail in the multi-mode scenario, we prove that it still holds at least under the further hypothesis of homogeneous action on the covariance matrix

    Quantum synchronization as a local signature of super- and subradiance

    Get PDF
    We study the relationship between the collective phenomena of super and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of long standing coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occur on the same time scale. This reciprocity is broken in the presence of dephasing noise.Comment: 12 pages, 6 figure

    Berry phase for a spin 1/2 in a classical fluctuating field

    Full text link
    The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with a adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.Comment: 4 pages, 1 figure, published versio

    Quantum computation with trapped ions in an optical cavity

    Full text link
    Two-qubit logical gates are proposed on the basis of two atoms trapped in a cavity setup. Losses in the interaction by spontaneous transitions are efficiently suppressed by employing adiabatic transitions and the Zeno effect. Dynamical and geometrical conditional phase gates are suggested. This method provides fidelity and a success rate of its gates very close to unity. Hence, it is suitable for performing quantum computation.Comment: 4 pages, 5 figures, REVTEX, second part modified, typos correcte

    Semantic based P2P System for local e-Government

    Get PDF
    The Electronic Government is an emerging field of applications for the Semantic Web where ontologies are becoming an important research technology. The e-Government faces considerable challenges to achieve interoperability given the semantic differences of interpretation, omplexity and width of scope. This paper addresses the importance of providing an infrastructure capable of dealing with issues such as: communications between public administrations across government and retrieval of official and non official documents in a timely, secure and accurate way at the back office. A semantic peer-to-peer approach is proposed to enhance the information management at the e-Government domain; this approach is integrated with a Government Information Retrieval system and it reuses the EGO Model which can be deployed within the e-Government context

    EgoIR: ontology-based information retrieval intended for eGovernment

    Get PDF
    The eGovernment is a field of applications for the Semantic Web. The eGovernment also is becoming an important research area and faces considerable challenges to achieve interoperability because of the semantic differences of interpretation, complexity and width of scope. It is however an open question how to apply these techniques fruitfully in the eGovernment domain. This paper addresses the importance of providing a semantic application that, within the eGovernment domain, is capable of dealing with the issue of the retrieval of government documentation in a timely and accurate way. In this paper, we present an approach ontology-based for retrieving government information

    Assessment of the structural properties of timber members in situ : a probabilistic approach

    Get PDF
    The assessment of the structural performance of existing timber structures is dependent, among other factors, on the capacity to evaluate the physical and mechanical properties of structural timber elements in situ. This paper discusses the possibilities/advantages of using a probabilistic approach to obtain a more reliable prediction of the reference properties of these timber members in situ. The presented approach combines information from common non-destructive techniques (NDT), such as visual assessment and ultrasounds, and those from semi-destructive tests (SDT), as meso tension specimens and wood cores. An application of this approach to maritime pine (Pinus pinaster Ait.) and chestnut (Castanea sativa Mill.) timber pieces of structural dimension is presented
    corecore