1,796 research outputs found
Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust
Epidemiology of diabetes mellitus among 193,435 cats attending primary-care veterinary practices in England
BACKGROUND: Diabetes mellitus (DM) is a common endocrine disease of cats. The prevalence of DM in cats in England is not well‐defined. HYPOTHESIS/OBJECTIVES: To estimate the prevalence and identify risk factors for DM in a large population of cats attending primary‐care practices. ANIMALS: A cohort of 193,563 cats in the VetCompass Programme attending 118 primary‐care practices in England. METHODS: Cross‐sectional analysis of cohort clinical data. Data were extracted covering September 1st 2009 and August 31st 2014. Period prevalence of DM was calculated. Associations between risk factors and DM were assessed using logistic regression modelling. RESULTS: Of 1,128 DM cases were identified among 194,563 cats (period prevalence 0.58%; 95% confidence interval [CI] 0.54–0.61). Multivariable modelling indicated that Tonkinese (OR 4.1; 95% CI 1.8–9.6; P = .001), Norwegian Forest (odds ratio [OR] 3.5; 95% CI 1.3–9.6; P = .001) and Burmese (OR 3.0; 95% CI 2.0–4.4; P < .001) cats had increased odds of DM compared with crossbred cats. DM odds increased as bodyweight categories increased above 4 kg (P < .001), as cats aged beyond 6 years old (P < .001) and in insured cats (OR 2.0; 95% CI 1.6–2.4; P < .001) but sex was not significantly associated with DM. CONCLUSIONS AND CLINICAL IMPORTANCE: Diabetes mellitus is an important component of the primary‐care practice caseload with 1‐in‐200 cats affected. An increased risk of DM in certain cat breeds supports a genetic predisposition. These results can guide future research and preventative healthcare
An Intensive Winter Fixture Schedule Induces a Transient Fall in Salivary IgA in English Premier League Soccer Players
We examined the effects of an intensive fixture schedule on salivary IgA (SIgA) concentration in professional soccer players from the English Premier League. Salivary samples were obtained from 21 males who participated in 7 games over a 30-day period during December 2013 and January 2014 (games 1-5 occurred in a 15-day period). Salivary-IgA decreased (P 0.05) from game 1 (91 ± 18 and 99 ± 21 μg.mL-1, respectively). Data demonstrate for the first time that a congested winter fixture schedule induces detectable perturbations to mucosal immunity in professional soccer players
Quantification of Seasonal Long Physical Load in Soccer Players With Different Starting Status From the English Premier League: Implications for Maintaining Squad Physical Fitness.
PURPOSE: To quantify the accumulative training and match load during an annual season in English Premier League soccer players classified as starters (n=8, started ≥60% of games), fringe players (n=7, started 30-60% of games) and non-starters (n=4, started 25.2 km/h (11.2 ± 4.2, v 2.9 ± 1.2 km; ES=2.3) than non-starters. Additionally, starters also completed more sprinting (P<0.01. ES=2.0) than fringe players who accumulated 4.5 ± 1.8 km. Such differences in total high-intensity physical work done were reflective of differences in actual game time between playing groups as opposed to differences in high-intensity loading patterns during training sessions. CONCLUSIONS: Unlike total seasonal volume of training (i.e. total distance and duration), seasonal high-intensity loading patterns are dependent on players' match starting status thereby having potential implications for training programme design
Anisotropic States of Two-Dimensional Electron Systems in High Landau Levels: Effect of an In-Plane Magnetic Field
We report the observation of an acute sensitivity of the anisotropic
longitudinal resistivity of two-dimensional electron systems in half-filled
high Landau levels to the magnitude and orientation of an in-plane magnetic
field. In the third and higher Landau levels, at filling fractions nu=9/2,
11/2, etc., the in-plane field can lead to a striking interchange of the "hard"
and "easy" transport directions. In the second Landau level the normally
isotropic resistivity and the weak nu=5/2 quantized Hall state are destroyed by
a large in-plane field and the transport becomes highly anisotropic.Comment: 5 pages, 4 figures, minor errors correcte
Orientation of the Stripe Formed by the Two-Dimensional Electrons in Higher Landau Levels
Effect of periodic potential on the stripe phase realized in the higher
Landau levels is investigated by the Hartree-Fock approximation. The period of
the potential is chosen to be two to six times of the fundamental period of the
stripe phase. It is found that the stripe aligns perpendicularly to the
external potential in contrast to a naive expectation and hydrodynamic theory.
Charge modulation towards the Wigner crystallization along the stripe is
essential for the present unexpected new result.Comment: 5 pages, RevTex, two figures included in the tex
Anisotropy and periodicity in the density distribution of electrons in a quantum-well
We use low temperature near-field optical spectroscopy to image the electron
density distribution in the plane of a high mobility GaAs quantum well. We find
that the electrons are not randomly distributed in the plane, but rather form
narrow stripes (width smaller than 150 nm) of higher electron density. The
stripes are oriented along the [1-10 ] crystal direction, and are arranged in a
quasi-periodic structure. We show that elongated structural mounds, which are
intrinsic to molecular beam epitaxy, are responsible for the creation of this
electron density texture.Comment: 10 pages, 3 figure
The UK's Global Health Respiratory Network: Improving respiratory health of the world's poorest through research collaborations.
Respiratory disorders are responsible for considerable morbidity, health care utilisation, societal costs and approximately one in five deaths worldwide [1-4]. Yet, despite this substantial health and societal burden – which particularly affects the world’s poorest populations and as such is a major contributor to global health inequalities – respiratory disorders have historically not received the
policy priority they warrant. For example, despite causing an estimated 1000 deaths per day, less than half of the world’s countries collect data on asthma prevalence (http://www.globalasthmareport.org/). This
is true for both communicable and non-communicable respiratory disorders, many of which are either amenable to treatment or preventable
Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.
The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals
The global distribution and drivers of alien bird species richness
Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., "colonisation pressure"). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species.Ellie E. Dyer, Phillip Cassey, David W. Redding, Ben Collen, Victoria Franks, Kevin J. Gaston, Kate E. Jones, Salit Kark, C. David L. Orme, Tim M. Blackbur
- …
