60 research outputs found
Emission measurements of alkenes, alkanes, SO2, and NO2 from stationary sources in Southeast Texas over a 5 year period using SOF and mobile DOAS
A mobile platform for flux measurements of VOCs (alkanes and alkenes), SO2, and NO2 emissions using the Solar Occultation Flux (SOF) method and mobile differential optical absorption spectroscopy (DOAS) was used in four different studies to measure industrial emissions. The studies were carried out in several large conglomerates of oil refineries and petrochemical industries in Southeast and East Texas in 2006, 2009, 2011, and 2012. The measured alkane emissions from the Houston Ship Channel (HSC) have been fairly stable between 2006 and 2011, averaging about 11,500kg/h, while the alkene emissions have shown greater variations. The ethene and propene emissions measured from the HSC were 1511kg/h and 878kg/h, respectively, in 2006, while dropping to roughly 600kg/h for both species in 2009 and 2011. The results were compared to annual inventory emissions, showing that measured VOC emissions were typically 5-15 times higher, while for SO2 and NO2 the ratio was typically 0.5-2. AP-42 emission factors were used to estimate meteorological effects on alkane emissions from tanks, showing that these emissions may have been up to 35-45% higher during the studies than the annual average. A more focused study of alkene emissions from a petrochemical complex in Longview in 2012 identified two upset episodes, and the elevation of the total emissions during the measurement period due to the upsets was estimated to be approximately 20%. Both meteorological and upset effects were small compared to the factor of 5-15, suggesting that VOC emissions are systematically and substantially underestimated in current emission inventories
Recommended from our members
Local-scale urban meteorological parameterization scheme (LUMPS): longwave radiation parameterization and seasonality-related developments
Recent developments to the Local-scale Urban Meteorological Parameterization Scheme (LUMPS), a simple model able to simulate the urban energy balance, are presented. The major development is the coupling of LUMPS to the Net All-Wave Radiation Parameterization (NARP). Other enhancements include that the model now accounts for the changing availability of water at the surface, seasonal variations of active vegetation, and the anthropogenic heat flux, while maintaining the need for only commonly available meteorological observations and basic surface characteristics. The incoming component of the longwave radiation (L↓) in NARP is improved through a simple relation derived using cloud cover observations from a ceilometer collected in central London, England. The new L↓ formulation is evaluated with two independent multiyear datasets (Łódź, Poland, and Baltimore, Maryland) and compared with alternatives that include the original NARP and a simpler one using the National Climatic Data Center cloud observation database as input. The performance for the surface energy balance fluxes is assessed using a 2-yr dataset (Łódź). Results have an overall RMSE < 34 W m−2 for all surface energy balance fluxes over the 2-yr period whe
Urban energy exchanges monitoring from space
One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. However, satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation); and also underestimate anthropogenic heat flux. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling
The International Urban Energy Balance Models Comparison Project: First Results from Phase 1
A large number of urban surface energy balance models now exist with different assumptions about the
important features of the surface and exchange processes that need to be incorporated. To date, no com-
parison of these models has been conducted; in contrast, models for natural surfaces have been compared
extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the
methods and first results from an extensive international comparison of 33 models are presented. The aim of
the comparison overall is to understand the complexity required to model energy and water exchanges in
urban areas. The degree of complexity included in the models is outlined and impacts on model performance
are discussed. During the comparison there have been significant developments in the models with resulting
improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a
dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in
Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap-
proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the
degree of model complexity required for accurate simulations. There is evidence that some classes of models
perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler
models perform as well as the more complex models based on all statistical measures. Generally the schemes
have best overall capability to model net all-wave radiation and least capability to model latent heat flux
Recommended from our members
An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities
Recommended from our members
Spatial and temporal patterns of surface-atmosphere energy exchange in a dense urban environment using scintillometry
Spatially-integrated measurements of the surface energy balance (SEB) are needed in urban areas to evaluate urban climate models and satellite observations. Scintillometers allow observations of sensible heat flux (QH) over much larger areas than techniques such as eddy covariance (EC), however methods are needed to partition between remaining unmeasured SEB terms. This is the first study to use observed spatial and temporal patterns of QH from a scintillometer network to constrain estimates of remaining SEB terms in a dense, heterogeneous urban environment. Results show that QH dominates the surface energy balance in central London throughout the year, with expected diurnal courses and seasonal trends in QH magnitude related to solar radiation input. Measurements also reveal a clear anthropogenic component of QH with winter (summer) weekday QH values 11.7% (5.1%) higher than weekends. Spatially, QH magnitude is correlated with vegetation and building land cover fraction in the measurement source areas. Spatial analysis provides additional evidence of anthropogenic influence with highest weekday/weekend ratios (1.55) from the City of London. Spatial differences are used to estimate horizontal advection and a novel method to estimate monthly latent heat flux is developed based on observed land cover and wet-dry surface variations in normalized QH. Annual anthropogenic heat emissions are estimated to be 46.3 W m−2 using an energy balance residual approach. The methods presented here have potential to significantly enhance understanding of urban areas, particularly in areas with tall buildings where there is little observational data
Recommended from our members
Multi-scale sensible heat fluxes in the urban environment from large aperture scintillometry and eddy covariance
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions
Recommended from our members
Influence of ground surface characteristics on the mean radiant temperature in urban areas
The effect of variations in land cover on mean radiant surface temperature (Tmrt) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of surface materials on Tmrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction on Tmrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused Tmrt to be underestimated. The implications of using high resolution (e.g. 15 minutes) temporal forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites
Selected Spectral Characteristics of Turbulence over an Urbanized Area in the Centre of Łódź, Poland
- …