405 research outputs found

    Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity

    Full text link
    We discuss experimental studies of the interaction between a nanoscopic object and a photonic crystal membrane resonator of quality factor Q=55000. By controlled actuation of a glass fiber tip in the near-field of a photonic crystal, we constructed a complete spatio-spectral map of the resonator mode and its coupling with the fiber-tip. On the one hand, our findings demonstrate that scanning probes can profoundly influence the optical characteristics and the near-field images of photonic devices. On the other hand, we show that the introduction of a nanoscopic object provides a low-loss method for on-command tuning of a photonic crystal resonator frequency. Our results are in a very good agreement with the predictions of a combined numerical/analytical theory.Comment: 9 pages, 4 figure

    Optimal operation of a multibasin reservoir system

    Get PDF
    A simulation-optimization procedure is presented for evaluating the extent of interbasin transfer of water in the Peninsular Indian river system consisting of 15 reservoirs on four river basins. A system-dependent simulation model is developed incorporating the concept of reservoir zoning to facilitate releases and transfers. The simulation model generates a larger number of solutions which are then screened by the optimization model. The Box complex nonlinear programming algorithm is used for the optimization. The performance of the system is evaluated through simulation with the optimal reservoir zones with respect to four indices, reliability, resiliency, vulnerability and deficit ratio. The results indicate that by operating the system of 15 reservoirs as a single unit the existing utilization of water may be increased significantly

    Spectral correlations in a random distributed feedback fibre laser

    Get PDF
    Random distributed feedback fibre lasers belong to the class of random lasers, where the feedback is provided by amplified Rayleigh scattering on sub-micron refractive index inhomogenities randomly distributed over the fibre length. Despite the elastic nature of Rayleigh scattering, the feedback mechanism has been insofar deemed incoherent, which corresponds to the commonly observed smooth generation spectra. Here, using a real-time spectral measurement technique based on a scanning Fabry-Pérot interferometer, we observe long-living narrowband components in the random fibre laser's spectrum. Statistical analysis of the ∼104 single-scan spectra reveals a preferential interspacing for the components and their anticorrelation in intensities. Furthermore, using mutual information analysis, we confirm the existence of nonlinear correlations between different parts of the random fibre laser spectra. The existence of such narrowband spectral components, together with their observed correlations, establishes a long-missing parallel between the fields of random fibre lasers and conventional random lasers

    The Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX): overview and preliminary results

    Get PDF
    While the demand for enhancing rainfall through cloud seeding is strong and persistent in the country, considerable uncertainty exists on the success of such an endeavour at a given location. To understand the pathways of aerosol-cloud interaction through which this might be achieved, a national experiment named Cloud Aerosol Interaction and Precipitation Enhancement EXperiment (CAIPEEX) in two phases, was carried out. The rationale of CAIPEEX, the strategy for conducting the experiment, data quality and potential for path-breaking science are described in this article. Pending completion of quality control and calibration of the CAIPEEX phase-II data, here we present some initial results of CAIPEEX phase-I aimed at documenting the prevailing microphysical characteristics of aerosols and clouds and associated environmental conditions over different regions of the country and under different monsoon conditions with the help of an instrumented research aircraft. First-time simultaneous observations of aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentration (CDNC) over the Ganges Valley during monsoon season show very high concentrations (> 1000 cm-3) of CCN at elevated layers. Observations of elevated layers with high aerosol concentration over the Gangetic valley extending up to 6 km and relatively less aerosol concentration in the boundary layer are also documented. We also present evidence of strong cloud- aerosol interaction in the moist environments with an increase in the cloud droplet effective radius. Our observations also show that pollution increases CDNC and the warm rain depth, and delays its initiation. The critical effective radius for warm rain initiation is found to be between 10 and 12 µm in the polluted clouds and it is between 12 and 14 µm in cleaner monsoon clouds

    Fuzzy modelling of acid mine drainage environments using geochemical, ecological and mineralogical indicators

    Get PDF
    Fuzzy logic was applied to model acid mine drainage (AMD) and to obtain a classification index of the environmental impact in a contaminated riverine system. The data set used to develop this fuzzy model (a fuzzy classifier) concerns an abandoned mine in Northern Portugal— Valdarcas mining site. Here, distinctive drainage environments (spatial patterns) can be observed based on the AMD formed in the sulphide-rich waste-dumps. Such environments were established, as the effluent flows through the mining area, using several kinds of indicators. These are physical–chemical, ecological and mineralogical parameters, being expressed in a quantitative or qualitative basis. The fuzzy classifier proposed in this paper is a min– max fuzzy inference system, representing the spatial behaviour of those indicators, using the AMD environments as patterns. As they represent different levels (classes) of contamination, the fuzzy classifier can be used as a tool, allowing a more reasonable approach, compared with classical models, to characterize the environmental impact caused by AMD. In a general way it can be applied to other sites where sulphide-rich waste-dumps are promoting the pollution of superficial water through the generation of AMD

    Sequence-Dependent Fluorescence of Cyanine Dyes on Microarrays

    Get PDF
    Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5′-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5′ guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5′-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling

    Lower bound for the spatial extent of localized modes in photonic-crystal waveguides with small random imperfections

    Get PDF
    Light localization due to random imperfections in periodic media is paramount in photonics research. The group index is known to be a key parameter for localization near photonic band edges, since small group velocities reinforce light interaction with imperfections. Here, we show that the size of the smallest localized mode that is formed at the band edge of a one-dimensional periodic medium is driven instead by the effective photon mass, i.e. the flatness of the dispersion curve. Our theoretical prediction is supported by numerical simulations, which reveal that photonic-crystal waveguides can exhibit surprisingly small localized modes, much smaller than those observed in Bragg stacks thanks to their larger effective photon mass. This possibility is demonstrated experimentally with a photonic-crystal waveguide fabricated without any intentional disorder, for which near-field measurements allow us to distinctly observe a wavelength-scale localized mode despite the smallness (∼1/1000 of a wavelength) of the fabrication imperfections
    • …
    corecore