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Lower bound for the spatial extent 
of localized modes in photonic-
crystal waveguides with small 
random imperfections
Rémi Faggiani1, Alexandre Baron2,3, Xiaorun Zang1, Loïc Lalouat4, sebastian A. schulz5,6, 

Bryan o’Regan5,7, Kevin Vynck1, Benoît Cluzel4, Frédérique de Fornel4, thomas F. Krauss5,7 & 

philippe Lalanne1,2

Light localization due to random imperfections in periodic media is paramount in photonics research. 

the group index is known to be a key parameter for localization near photonic band edges, since small 

group velocities reinforce light interaction with imperfections. Here, we show that the size of the 

smallest localized mode that is formed at the band edge of a one-dimensional periodic medium is driven 

instead by the effective photon mass, i.e. the flatness of the dispersion curve. Our theoretical prediction 
is supported by numerical simulations, which reveal that photonic-crystal waveguides can exhibit 

surprisingly small localized modes, much smaller than those observed in Bragg stacks thanks to their 

larger effective photon mass. This possibility is demonstrated experimentally with a photonic-crystal 
waveguide fabricated without any intentional disorder, for which near-field measurements allow us to 
distinctly observe a wavelength-scale localized mode despite the smallness (~1/1000 of a wavelength) 
of the fabrication imperfections.

Random imperfections, even very small ones, can have a profound impact on light propagation in periodic pho-
tonic structures, the most striking phenomenon being undoubtedly the formation of small localized modes in 
the vicinity of photonic band edges. The interplay between long-range order and perturbative disorder, orig-
inally proposed as a way to enable strong light localization in three-dimensional media1,2, was largely investi-
gated in one-dimensional (1D) layered structures (i.e., Bragg stacks), which can be modeled with greater ease3–9. 
Besides these works, the research topic arose considerable interest in the photonic-crystal community, when it 
was realized that the operation of slow-light devices based on photonic-crystal waveguides (PhCWs) was una-
voidably limited by small residual fabrication imperfections10–13. The possibility to observe individual localized 
modes formed by disorder in these structures and exploit them as “optical cavities” for, e.g., quantum informa-
tion processing14–17 or random lasing18,19 prompted numerous studies on their confinement properties20–23. Quite 
remarkably, near-field measurements on PhCWs fabricated with state-of-the-art nanotechnologies22,23 suggest 
that wavelength-scale localized modes, comparable in size to engineered heterostructure nanocavity modes in 
PhCWs24,25, could naturally be formed in spite of the very low perturbation level.

It is widely accepted that the typical spatial extent of localized modes in the band decreases when approach-
ing the edge. This trend is generally understood by drawing a parallel between the mode spatial extent and the 
“Anderson” localization length, which describes the exponential attenuation of the ensemble-averaged intensity 
with the system size. The localization length is known to scale as the square of the group velocity vg for small 
disorder levels26–28, thereby indicating that light confinement should be extremely strong at the band edge, where 
vg vanishes (in perfectly periodic media). The formation of small localized modes in close vicinity to the band 
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edge, however, deserves special attention, as it relies not only on the interference between multiply-scattered 
propagating waves, leading to Anderson localization29,30, but also on the attenuation provided by the photonic 
band gap. Imperfections, even vanishingly small ones, can indeed easily create gap (defect) modes, similar in 
nature to photonic-crystal nanocavities31–33, which participate in the broadening of the band edge23,34,35 and in the 
formation of the so-called Lifshitz tail in the band gap23,36. In this narrow spectral range around the band edge, 
propagating and evanescent waves mix up and the group velocity evidently looses physical significance, thereby 
requiring the basic parallel between mode spatial extent and localization length to be revisited.

In this article, we theoretically, numerically and experimentally investigate the confinement properties of 
localized modes in close vicinity to the band edge of 1D periodic photonic structures at small disorder levels. We 
demonstrate in particular that the size of the smallest localized mode that may be found in a given photonic struc-
ture is driven by the effective photon mass, i.e. the flatness of the dispersion curve, rather than the group index. 
This, in turn, suggests that an engineering of photonic bands in PhCWs may allow us either to lower the impact 
of residual imperfections on the performance of slow-light photonic devices or to reinforce the light confinement 
for strong light-matter interaction purposes.

The fact that the sensitivity of wave transport to random perturbations is increased with the flatness of the 
dispersion relation is well known in condensed matter physics37,38, but the possibility to control the spatial extent 
of the smaller localized modes via the effective mass has not been suggested in earlier works on light localization 
in photonic structures1,10–23,26–28,34,35. We believe that the conceptual understanding gained from our study could 
help the design of PhCWs and cavities with potential outcomes in photonic technologies.

In the remainder of this paper, we first present a phenomenological model for light propagation near the 
band edge of 1D periodic media with small random perturbations. We predict that a minimum number of peri-
ods is necessary to form a localized mode at a given disorder level and derive a closed-form expression relating 
this lower bound to the disorder level and the effective photon mass. Then, we test and validate our predictions 
by a series of numerical simulations on randomly-perturbed Bragg stacks and PhCWs. At tiny disorder levels, 
PhCWs are found to support surprisingly small localized modes, much smaller than those observed in Bragg 
stacks thanks to their larger effective photon mass. Finally, we verify this possibility by performing near-field 
measurements on a photonic-crystal waveguide fabricated without any intentional disorder and observe very 
distinctly a localized mode with a spatial extent of only 6 µm, in agreement with our numerical simulations.

Results
Formation of localized modes at band edges. We start by considering an arbitrary one-dimensional 
periodic photonic structure and aim at establishing an explicit relation between the dispersion curve of the 
unperturbed medium, the level of geometric variation, and the spatial extent of the resulting localized modes 
at the band edge. A typical dispersion curve ω(κ) near a band edge is sketched in Fig. 1(a). While it is common 
practice in the literature to plot band structures for purely real wavevectors only, one should be aware that the 
wavevector is in general a complex quantity, κ =  k +  iα. Dispersion relations are analytic and continuous at band 
edges39 and can be approximated by a quadratic expression
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where m =  (∂ 2ω/∂ κ2)−1 is the effective photon mass, which describes the flatness of the dispersion curve. The 
complex wavevector equals κ =  k in the band, corresponding to propagating waves, and κ =  π/a +  iα in the gap, 

Figure 1. Effect of random imperfections on light propagation in one-dimensional periodic media. 
 (a) Sketch of the dispersion curve of a one-dimensional periodic medium near a band edge at ω =  ω0 (black 
curve). Note that the left and right parts of the plot correspond to the real and imaginary parts of the wavevector 
κ. Perturbations result in positive or negative energy shifts ± ∆ ω of the dispersion curve (gray curves), where 
∆ ω ≪  ω0, resulting in a phase-shift ∆ k (green arrows) and/or a damping at rate α (blue arrow) for a guided 
wave at ω =  ω0 +  δω. (b) Sketches of wave propagation in randomly-perturbed periodic media. In the vicinity 
of the band edge, ω0 −  ∆ ω ≤  ω ≤  ω0 +  ∆ ω, light successively and randomly experiences either phase-shifting or 
damping unit cells (middle), contrary to higher and lower frequencies, for which only phase-shifts or tunnelling 
damping are experienced (top and bottom, respectively).
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leading to an exponentially-damped evanescent wave. Note that Eq. (1), which comes from a Taylor expansion of 
the dispersion relation at the band edge, remains valid for complex periodic waveguides provided that the mode 
dispersion remains below the light line of the cladding. It is hence often used in photonics to describe band-edge 
phenomena24,40,41 (albeit for real wavevectors only in most cases).

As sketched in Fig. 1(a), small geometrical variations result in energy shifts ± ∆ ω of the dispersion curve with 
negligible deformation42. In the perturbative regime, the relative frequency shift ∆ ω/ω is directly proportional to 
the variation of the waveguide effective refractive index ∆ neff/neff, which itself scales linearly with the disorder 
level σ . These energy shifts define three frequency regions, where different behaviors are expected. At frequencies 
ω <  ω0 −  ∆ ω, Bloch waves are essentially evanescent (bottom panel in Fig. 1(b)). In this regime, light is expected 
to be strongly damped via the band gap attenuation and few gap modes may be found. By contrast, at frequencies 
ω >  ω0 +  ∆ ω, Bloch waves are essentially propagating (top panel in Fig. 1(b)). This is typically the regime where 

Anderson-localized modes are found and the localization length should scale as ξ ~ n1/ g
2
. To understand the 

limited range of validity of this regime, one should know that this scaling behavior comes from a double limit in 
the group velocity vg =  c/ng and the disorder level σ  ∝  ∆ ω both tending towards zero. It is valid only when σ  tends 
towards zero at a fast enough rate compared to vg. This requirement guarantees that the impact of random imper-
fections on transport remains perturbative43. Due to the nonvanishing disorder level in real nanostructures, this 
condition necessarily fails in the close vicinity of the band edge and the n1/ g

2 scaling behavior unavoidably breaks 
down. This peculiar regime that surrounds the band edge, ω0 −  ∆ ω ≤  ω ≤  ω0 +  ∆ ω, is the one of interest in this 
article. Here, light propagating in the randomly-perturbed periodic medium will experience alternatively and 
randomly either phase-shifts ∆ k (in Re(κ)) or exponential attenuations α (in Im(κ)). The formation of localized 
modes should therefore rely on an interplay between propagating and evanescent waves (middle panel in 
Fig. 1(b)).

We adopt a Fabry-Perot picture to model the formation of a localized mode in this regime. By analogy with 
standard optical cavities, for a localized mode to appear at a frequency ω (it is convenient to situate the fre-
quency in relation to the band edge, ω =  ω0 +  δω), it is required that, during its transport, light both accumulates 
a phase-shift that satisfies a phase-matching condition (typically, 2π on a round trip) and experiences a strong 
damping (typically, 1/e2 for the intensity). This simple reasoning first indicates that a minimum number of periods 
Nmin is necessary to form a localized mode in a perturbed medium.

Evidently, smaller localized modes are formed for imperfections that produce larger momentum variations 
and damping rates. Depending on the perturbation and the frequency, the momentum variations (with respect to 
the unperturbed mode) can be either positive or negative, and the damping rate can be zero or take large values. 
To account for these statistical variations, we calculate the average momentum variation 〈 ∆ k〉  and the average 
damping rate 〈 α〉  using Eq. (1) and, keeping only the lowest order in δω/∆ ω, find that
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Hence, 〈 ∆ k〉  is the largest at the band edge (ω =  ω0) and decays more slowly in the gap than in the band 
(δω/2∆ ω compared to δω ω∆2 / ), while 〈 α〉  continuously increases when entering deeper into the gap. This 
indicates, on the one hand, that the smallest localized modes should be found at the band edge (ω =  ω0), and on the 
other hand, that the localized modes formed in the gap should be smaller and more numerous than in the band. 
To obtain the lower bound value for the mode spatial extent, it is thus sufficient to consider the momentum vari-

ation and damping rate at the band edge, ω∆ = ∆k m2
1

2
 and α ω= ∆m2

1

2
, which evidently become more 

important as the dispersion curve flattens, i.e. for larger effective photon masses. This leads us to predict that the 
lower bound on the spatial extent of localized modes in perturbed periodic media scales as

ω∝ ∆ .
−N a m( ) (4)min

2 1/2

Equation (4) is obtained by neglecting intricate multiple-scattering processes in transport, such as variations 
of the reflection and transmission coefficients at the perturbed lattice sites44, yet it is highly robust and accurate. 
As will be seen with numerical and experimental results, fine effects related to the actual geometry, especially the 
scattering coefficients at every lattice sites, impact the proportionality factor but not the scaling with m and ∆ ω.

threshold in the size distribution of localized modes. To test our prediction on the existence of a 
minimum number of periods necessary to form a localized mode near a photonic band edge, we resort to numer-
ical simulations. A systematic exploration of real PhCWs with long-scale propagation lengths and 
nanometer-scale perturbations would require unreasonably long computation times with 3D fully-vectorial 
approaches, considering as well the large number of simulated structures to reach good statistical accuracy. 
Fortunately, in close vicinity of the band edge, that is the region of interest here, out-of-plane scattering into the 
air cladding is much weaker than backscattering (scaling as ng and ng

2, respectively)26,45. Since we are interested in 
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the spatial extent properties of localized modes (and not Q-factor properties), we then believe that the problem 
can safely be treated within a 2D approximation.

We perform 2D fully-vectorial calculations with a Fourier-Bloch-mode method46,47 on a single-row-missing 
(W1) PhCW with an hexagonal lattice constant a =  420 nm, a hole radius 0.3a and an effective index of 2.83 to 
model the transverse confinement of the main TE-mode in a silicon membrane of thickness 240 nm suspended in 
air48. We implement disorder by varying the hole radii in the first rows of the W1 waveguide according to a nor-
mal distribution with standard deviation σ . The computational layout is shown in Fig. 2(a). In brief, we calculate 
the local density of states (LDOS) spectrum in the center of a 100a-long perturbed medium and spectrally locate 
the resonant modes of the system from the observed Lorentzian peaks, see Fig. 2(b) for an example. The LDOS 
spectrum is calculated on a narrow frequency window close to the band-edge wavelength λ0 =  2πc/ω0 (λ0 −  0.5 
nm <  λ <  λ0 +  1.5 nm), in which, according to our analysis above, the smallest possible localized modes should 
be observed. We apply a strict protocol, described in the Methods section, to ensure that the peaks correspond to 
individual localized modes, i.e. they are not affected by the finite length of the computational window. Repeating 
the calculation for 900 independent disorder realizations, we estimate the distribution function Pσ(L0), which rep-
resents the likelihood of observing a localized mode near the band edge frequency with a spatial extent L smaller 
than L0 at any position along an infinitely-long W1 waveguide perturbed by a disorder level σ .

Pσ(L0) is shown in Fig. 2(d) for a disorder level σ  =  1.5 nm, which is comparable to the residual disorder ampli-
tude left by state-of-the-art nanofabrication technologies. The curve clearly exhibits a threshold-like behavior and 
evidences that localized modes are formed essentially above a certain threshold length Ntha, where Nth is the num-
ber of lattice periods. The threshold is straightforwardly estimated by a linear fit of Pσ(L0) for 0.03 <  Pσ <  0.15. 
The intensity maps |E|2 of three localized modes are shown in Fig. 2(c), the first one corresponding to the small-
est mode (L =  3.85 µm) we obtained among the 900 realizations, the others showing that localized modes may 
be composed of several sub-spots. Quite remarkably, our numerical simulations unambiguously show that 
wavelength-scale localized modes may be observed in PhCWs at disorder levels of the order of λ/1000. This point 
will be further discussed below. It is also interesting to remark that most of the smaller localized modes were 
formed in the gap region, as expected from the perturbative analysis in the previous section.

Numerical verification of the scaling law. We proceed to the numerical verification of the scaling law 
in Eq. (4). For a careful testing, we consider two different geometries, the W1 waveguide investigated above and 
a 1D quarter-wave Bragg stack, which have substantially different localization properties. Figure 3(a) shows the 
dispersion curves of the unperturbed photonic structures, where the Bragg stack is composed of alternating die-
lectric layers with lattice constant a =  453 nm and refractive indices n1 =  1.5 and n2 =  3.5. The band edges of the 
two photonic structures appear at nearby frequencies, yet the PhCW exhibits an effective photon mass about 10 
times larger than the Bragg stack.

Figure 2. Numerical study of small localized modes formed in W1 waveguides. (a) Computational layout 
used to estimate Pσ(L0). The red arrow represents a dipole source placed in the center of a 100a-long section of 
the PhCW. The grey holes of the two inner rows represent the perturbed holes. Two semi-infinite unperturbed 
PhCWs surround the perturbed section. (b) Spectral dependence of the LDOS normalized to that in free space, 
LDOS0, in a specific configuration. The vertical red dashed line indicates the band edge wavelength. The envelop 
of the magnetic-field-intensity profile |H|2 of the resonant mode marked by a red square is shown in the inset. Its 
spatial extent is L =  12.4 µm. (c) Examples of the intensity distribution |E|2 of small localized modes obtained by 
numerical calculations with σ  =  1.5 nm. The localized modes may be composed of several sub-spots.  
(d) Numerical prediction of Pσ(L0) for a W1 waveguide with σ  =  1.5 nm. The distribution exhibits a clear 
threshold Nth, obtained from a linear fit (red dashed line).
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The scaling law in Eq. (4) is tested, on the one hand, by varying the disorder level σ  imposed on the PhCW 
without changing its structure − ∆ ω is therefore varied while m and λ0 remain constant – and, on the other hand, 
by varying the refractive index n2 of the Bragg stack up to large (unrelatistic for optical waves) values while pre-
cisely monitoring the disorder level and the period to respectively maintain ∆ ω/c =  0.01 µm−1 and λ0 =  1.51 µm 
constant. In the latter case, the sole physical quantity that is expected to vary is therefore the effective photon 
mass, from mc ≈  4 to 40 µm−1. Furthermore, the same protocol is applied and an average over 10000 independent 
disorder realizations, obtained by randomly varying the layer thicknesses, is performed (computations rely on 
simple 2 ×  2 matrix products). The resulting threshold lengths Nth are shown in Fig. 3(b) as a function of (a2m∆ 
ω)−1/2. A clear linear dependence is obtained in both cases, thereby constituting a firm validation of the scaling 
law proposed in Eq. (4).

As already noted above, our numerical simulations indicate that wavelength-scale localized modes may be 
observed in W1 waveguides even at tiny disorder levels. Figure 3(b) shows that such small localized modes cannot 
be observed in classical Bragg stacks (except if one considers unrealistically large values for the index contrast). It 
is the large effective photon mass provided by W1 waveguides that makes the difference.

The formation of localized modes near the photonic band edge is completely expected, but the fact that struc-
tural imperfections as small as λ/1000 may lead to the formation of modes with spatial extents of only a few 
wavelengths comes as a surprise. In engineered nanocavities, for instance, the lattice structural modifications 
employed to create wavelength-scale gap modes are usually larger than λ/1000, typically consisting in removing, 
shifting or resizing a few holes24,31,33. In addition, they are spatially correlated and precisely controlled to col-
lectively contribute to the mode formation. Thus, one would expect rather large volumes for modes created by 
perturbations that are much weaker and random.

Near-field observation of a wavelength-scale localized mode. Our numerical results encouraged us 
to explore the possibility of observing wavelength-scale localized modes at tiny disorder levels. Towards this aim, 
we fabricated a W1 waveguide without adding any intentional disorder during the writing process, so that the sole 
perturbation that remained was the inevitable residual disorder caused by our state-of-the-art fabrication tech-
nology. The typical disorder level of the fabrication facility has been characterized by thorough statistical analysis 
in prior studies and was found to be σ  ~ 1–2 nm (~0.001λ0)

49. Though our procedure lacks control compared to 
previous studies on localization that introduce intentional random perturbations14–16,20, we are able to reach a 
minute and unprecedented level of perturbation that has never been probed up to now near photonic band edges.

At vanishingly small group velocities, it is well known that the optical mean free-path is very short and cou-
pling light into localized modes cannot be achieved by end-fire injection through cleaved facets10. For this reason, 
we designed a layout consisting of a pair of collinear waveguides: a W1 waveguide operating in the slow-light 
regime near the band cutoff-wavelength λ0 ~ 1490 nm, and a W1.1 (10% larger defect-width) waveguide operat-
ing in the fast-light regime, and therefore much less sensitive to residual imperfections. An SEM micrograph of a 
typical set of waveguides fabricated into a 220-nm thick free-standing silicon membrane is shown in Fig. 4(a). The 
fast (W1.1) waveguide is used as an independent channel for delivering light into the localized modes supported 
by the slow (W1) waveguide via evanescent coupling, see the inset of Fig. 4(a). This coupling is extremely weak 
due to the very low disorder level and is therefore expected not to affect the localization properties of interest here. 
Furthermore, compared to a previous approach where TE-like localized modes were excited via a weak coupling 
with TM-like ballistic modes in a single PhCW, thereby resulting in near-field images containing both localized 

Figure 3. Scaling of the size of smallest localized modes: verification of Eq. (4). (a) Dispersion curves ω(κ) 
of a W1 waveguide and of a quarter-wave Bragg stack with n1 =  1.5 and n2 =  3.5. The former has an effective 
photon mass that is about 10 times larger than that of the latter. (b) Size threshold Nth for the two photonic 
structures with varying ∆ ω (while keeping m constant for the PhCW) or varying m (while keeping ∆ ω constant 
for the Bragg stack). The linearity of the curves validates Eq. (4). The difference in the slopes is likely to be due 
to the different scattering coefficients at every perturbed interface44. Furthermore, W1 waveguides exhibit 
wavelength-scale localized modes, much smaller than those possibly obtained in Bragg stacks, even at tiny 
disorder levels.
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and extended modes23, our configuration allows us to form clear near-field maps of individual localized modes 
and thus, estimate their spatial extent with greater accuracy.

Nevertheless, because of their small spatial extents and spectral bandwidths as well as their unknown spa-
tial and spectral positions, wavelength-scale localized modes remain challenging to observe. Hence, for a rapid 
initial exploration over broad spatial and spectral intervals, we first use low-spectral (200 pm) and low-spatial 
resolution (100 nm) multispectral near-field scanning-optical microscopy (SNOM) using a tapered monomode 
silica fiber probe and a supercontinuum laser source50. Only the first 25 µm of the waveguide were probed. Due to 
the lack of spectral resolution, the images recorded in the 1480–1500 nm band and shown in the Supplementary 
Movie 1 online cannot reveal localized modes with a quality factor Q >  104. We distinguish two types of states 
for wavelengths close to the band edge of the W1 waveguide at 1487 nm. The most frequent ones are delocalized 
states that extend over most of the scanned area and exhibit numerous spatial bright spots. More interesting in the 
present context is the existence of less probable, wavelength-scale localized modes: two modes at λ =  1488.3 and 
1491.5 nm are seen in the movie. With high-resolution SEM analysis of the W1 waveguide, we have checked that 
they are not due to abnormally large, albeit inevitable, local fabrication defects, but rather to the residual intrinsic 
imperfections inherent to the fabrication process over the entire waveguide structure, see the Supplementary 
Information online.

For a deeper analysis, we resort to high spectral-resolution SNOM with a 1-pm-resolution tunable laser, 
increasing the spatial sampling to ~62 nm and scanning the W1 waveguide at spatial locations found with low 
resolution. This allows us to detect modes with larger Q’s, but in return, finding a resonance becomes very 
time-consuming. Figure 4(b) shows a state formed by a chain of spots with varying brightness, which collec-
tively resonate at the same wavelength, ergo all spots including the less intense spots belong to the same coherent 
state that covers the entire scan interval. The “stadium-shaped” patterns are due to the cavity tip interaction51. 
Figure 4(c) shows a different mode composed of three dominant main spots that are grouped together and show 
up over a dark background. It is the smallest mode that we have observed. Its total spatial extent L is smaller 
than 6 µm. For comparison, the numerical data reported in Fig. 2(d) predict that P1.5(L0) is equal to 0.14 for 
L0 =  6 µm. This implies that, on average along the W1 waveguide, localized modes with spatial extents L ≤  6 µm 
are expected every L0/P1.5(L0) =  43 µm. This is consistent with our observation of a single localized mode obtained 
by scanning a 25-µm-long section of the W1 waveguide. Interestingly also, we note that the predicted and meas-
ured lower bound in mode spatial extent matches well with the cavity length above which the operation of 
photonic-crystal cavity lasers becomes significantly impacted by residual fabrication imperfections41. The occur-
rence of disorder-induced localization in engineered cavities is an aspect that deserves more attention.

Figure 4(d) finally shows the spectral evolution of the localized mode, calculated by integrating the measured 
intensity over a fixed rectangular area comprising the mode and normalizing it to the averaged intensity in the 
W1.1 waveguide for several wavelengths. The result confirms the existence of a high confinement level both in 
the spatial and spectral domains. As the wavelength is tuned away from resonance at λ =  1488.38 nm, we observe 
that the spatial and spectral variations of the spot intensities exhibit an intricate behavior, suggesting a beating 
between several modes (although non-uniform coupling with the tip cannot be excluded). The inset shows the 
spectral evolution of the normalized intensity of the localized state and evidences a resonance with a Q ~ 5.104. 

Figure 4. Near-field experiment. (a) Scanning electron microscope images of the sample. The inset on the 
bottom left provides a close-up of the two side-coupled 84-µm-long PhCWs and of the access ridge waveguides 
used to inject light. The inset on the bottom right shows a sketch of the layout designed to obtain clear near-field 
images of the localized modes. Light is injected in the W1.1 waveguide, which operates in the fast-light regime, 
and couples evanescently to localized modes in the W1 waveguide, operating in the slow-light regime. (b,c) 
High-resolution (10 pm) near-field images of the PhCW pair recorded over an area covering the first 25 µm of 
the sample. The panel in (b) shows an extended state (λ =  1489.61 nm) composed of a series of coupled localized 
modes. The panel in (c) shows a wavelength-scale localized mode (λ =  1488.38 nm) composed of three sub-
spots and of spatial extent about 6 µm. It is the smallest localized mode detected experimentally. (d) Spectral 
evolution of the wavelength-scale mode near the resonance wavelength λr. The inset shows the intensity 
Sbox(λ) integrated over the rectangular dashed-linebox and normalized to the averaged intensity in the W1.1 
waveguide.
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Since the localized mode is formed from tiny structural modifications, smaller than those typically employed for 
engineered cavities, mode-profile impedance mismatch31 is kept at a very low level, and leakage into the air clad-
ding and into the W1.1 waveguide is expected to be as small as that encountered with side-coupled engineered 
cavities. Thus, we believe that the observed Q value is limited by the tip interaction, consistently with earlier works 
with silica tips and engineered cavities52.

Discussion
In this article, we have investigated the physical mechanism underlying the formation of small localized modes 
at band edges of periodic media, demonstrating the existence of a minimal mode size and showing that this 
bound is predominantly driven by the effective photon mass. In particular, we have found that wavelength-scale 
localized modes naturally form up in PhCWs at state-of-the-art intrinsic disorder levels due to the flatness of the 
dispersion curve.

The localized modes have positions and frequencies that are not known in advance by design. As such, they 
are not easy to handle in applications that require extreme precisions, but their existence and the possibility 
to enhance (statistically) their spatial confinement by using flatter dispersion curves is extremely relevant for 
quantum electrodynamics experiments14–17, random lasing18,19, but also for sensing applications53,54 and random 
photonics devices55,56.

The existence of a lower bound for the volume of localized states in perturbed periodic media and the 
importance of the effective photon mass have not been pointed out in early works on optical localization in the 
slow-light regime. These first results, supported by a simple intuitive model, should encourage more in-depth 
theoretical investigations.

Similarly, the effective photon mass is rarely acknowledged in the literature on engineered nanocavities, such 
as the heterostructure family24,25, which are defect-modes that benefit from a slow-light effect close to the band 
edge31 and, as explained in this article, are in many respects similar to the present localized modes. We therefore 
expect that the conceptual understanding gained from this disorder-driven study will have repercussions on 
future photonic structure designs to push back the ultimate limit imposed by unavoidable disorder in slow-light 
photonic devices26,27,57 as well as in engineered cavities41,58.

Methods
Numerical simulations and protocol. All our computational results were obtained with an in-house ful-
ly-vectorial frequency-domain Fourier-Bloch-mode method46,47. The statistical retrieval of Pσ(L0) requires deter-
mining whether the resonant modes identified in the LDOS spectrum are truly individual localized modes. On 
the one hand, the field profile of localized modes (with spatial extent smaller than the computational system size) 
should remain unchanged after increasing the waveguide length. On the other hand, a normalized field profile 
independent of the position of the source indicates that a single mode contributes to it. On this basis, we com-
puted the on-axis magnetic-field profiles generated by a dipole source at the center of the system at the resonance 
wavelength for the 100a-long perturbed waveguide, for a 200a-long protracted waveguide obtained by surround-
ing the 100a-long waveguide by two 50a-long perturbed sections, and for the same 200a-long waveguide where 
the source position was shifted by two periods. A resonant mode was considered as an individual localized mode 
only if the field profile remained unchanged after the waveguide extension and source displacement. The spatial 
extent of the localized mode is defined as L =  |z1 −  z2|, where the magnetic field intensity |H(z)|2 should be smaller 
than max (|H(z)|2)/e2 everywhere outside the interval [z2;z1].

sample fabrication. The PhCWs were defined in a ZEP-520A resist by electron beam lithography, using a 
30 kV Raith/LEO lithography system. The pattern was transferred into the 220 nm top layer of silicon-on-insulator 
wafers by a SF6/CHF3 reactive ion etch. After stripping of any remaining ZEP resist, the buried oxide under the 
photonic crystal region was removed by selective wet etching with HF acid. Finally, samples were cleaned in a 
H2O2/H2SO4 mixture and cleaved to allow butt coupling. The fabrication procedure is explained in more detail 
in59. The structural parameters of the fabricated sample vary slightly from those used in the simulations, yield-
ing a photonic band edge at about 1490 nm, which is clearly observed in transmission measurements (see the 
Supplementary Information online).

Near-field measurements. Near-field measurements were made using a home-made Scanning Near-field 
Optical Microscope (SNOM) operating in collection mode with a shear-force feedback. A pulled silica fiber with 
a 50 nm apex was used as a near-field probe. The sample-probe distance was set to 10 nm. A butt coupling tech-
nique with microscope objectives was employed for light injection inside the integrated waveguides and light 
polarization was controlled with a free-space polarizer.
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