721 research outputs found
Synaptotagmin-7 Is an Asynchronous Calcium Sensor for Synaptic Transmission in Neurons Expressing SNAP-23
Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution of SNAP-23 for SNAP-25 in mouse autaptic glutamatergic hippocampal neurons results in asynchronous release and a higher frequency of spontaneous release events (mEPSCs). Use of neurons from double-knock-out (SNAP-25, synaptotagmin-7) mice in combination with viral transduction showed that SNAP-23-driven release is triggered by endogenous synaptotagmin-7. In the absence of synaptotagmin-7 release became even more asynchronous, and the spontaneous release rate increased even more, indicating that synaptotagmin-7 acts to synchronize release and suppress spontaneous release. However, compared to synaptotagmin-1, synaptotagmin-7 is a both leaky and asynchronous calcium sensor. In the presence of SNAP-25, consequences of the elimination of synaptotagmin-7 were small or absent, indicating that the protein pairs SNAP-25/synaptotagmin-1 and SNAP-23/synaptotagmin-7 might act as mutually exclusive calcium sensors. Expression of fusion proteins between pHluorin (pH-sensitive GFP) and synaptotagmin-1 or -7 showed that vesicles that fuse using the SNAP-23/synaptotagmin-7 combination contained synaptotagmin-1, while synaptotagmin-7 barely displayed activity-dependent trafficking between vesicle and plasma membrane, implying that it acts as a plasma membrane calcium sensor. Overall, these findings support the idea of alternative sytâ¶SNARE combinations driving release with different kinetics and fidelity
v-SNARE transmembrane domains function as catalysts for vesicle fusion.
Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, Ă-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion
Science verification of the new FlashCam-based camera in the 28m telescope of H.E.S.S
In October 2019 the central 28m telescope of the H.E.S.S. experiment has beenupgraded with a new camera. The camera is based on the FlashCam design whichhas been developed in view of a possible future implementation in themedium-sized telescopes of the Cherenkov Telescope Array (CTA). We report hereon the results of the science verification program that has been performedafter commissioning of the new camera, to show that the camera and softwarepipelines are working up to expectations.<br
Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT
Studying the temporal variability of BL Lac objects at the highest energies
provides unique insights into the extreme physical processes occurring in
relativistic jets and in the vicinity of super-massive black holes. To this
end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in
the high (HE, 100 MeV 200 GeV)
gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE
light curve in the quiescent state is consistent with a log-normal behavior.
The VHE variability in this state is well described by flicker noise
(power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales
larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives
consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10
days) compatible with the VHE findings. The HE and VHE power spectral densities
show a scale invariance across the probed time ranges. A direct linear
correlation between the VHE and HE fluxes could neither be excluded nor firmly
established. These long-term-variability properties are discussed and compared
to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during
VHE-flaring states. The difference in power spectral noise behavior at VHE
energies during quiescent and flaring states provides evidence that these
states are influenced by different physical processes, while the compatibility
of the HE and VHE long-term results is suggestive of a common physical link as
it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure
A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube
Evidence for an extraterrestrial flux of high-energy neutrinos has now been
found in multiple searches with the IceCube detector. The first solid evidence
was provided by a search for neutrino events with deposited energies
TeV and interaction vertices inside the instrumented volume. Recent
analyses suggest that the extraterrestrial flux extends to lower energies and
is also visible with throughgoing, -induced tracks from the Northern
hemisphere. Here, we combine the results from six different IceCube searches
for astrophysical neutrinos in a maximum-likelihood analysis. The combined
event sample features high-statistics samples of shower-like and track-like
events. The data are fit in up to three observables: energy, zenith angle and
event topology. Assuming the astrophysical neutrino flux to be isotropic and to
consist of equal flavors at Earth, the all-flavor spectrum with neutrino
energies between 25 TeV and 2.8 PeV is well described by an unbroken power law
with best-fit spectral index and a flux at 100 TeV of
.
Under the same assumptions, an unbroken power law with index is disfavored
with a significance of 3.8 () with respect to the best
fit. This significance is reduced to 2.1 () if instead we
compare the best fit to a spectrum with index that has an exponential
cut-off at high energies. Allowing the electron neutrino flux to deviate from
the other two flavors, we find a fraction of at Earth.
The sole production of electron neutrinos, which would be characteristic of
neutron-decay dominated sources, is rejected with a significance of 3.6
().Comment: 16 pages, 10 figures; accepted for publication in The Astrophysical
Journal; updated one referenc
Measurement of the Atmospheric Spectrum with IceCube
We present a measurement of the atmospheric spectrum at energies
between 0.1 TeV and 100 TeV using data from the first year of the complete
IceCube detector. Atmospheric originate mainly from the decays of kaons
produced in cosmic-ray air showers. This analysis selects 1078 fully contained
events in 332 days of livetime, then identifies those consistent with particle
showers. A likelihood analysis with improved event selection extends our
previous measurement of the conventional fluxes to higher energies. The
data constrain the conventional flux to be times a
baseline prediction from a Honda's calculation, including the knee of the
cosmic-ray spectrum. A fit to the kaon contribution () to the neutrino
flux finds a kaon component that is times the baseline
value. The fitted/measured prompt neutrino flux from charmed hadron decays
strongly depends on the assumed astrophysical flux and shape. If the
astrophysical component follows a power law, the result for the prompt flux is
times a calculated flux based on the work by Enberg, Reno
and Sarcevic.Comment: PRD accepted versio
Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3
Context. Recently, the high-energy (HE, 0.1-100 GeV) -ray emission
from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered
to be modulated with a 10.3-day period, making it the first extra-galactic
-ray binary.
Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV)
-ray emission and the search for modulation of the VHE signal with the
orbital period of the binary system.
Methods. LMC P3 has been observed with the High Energy Stereoscopic System
(H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has
been folded with the known orbital period of the system in order to test for
variability of the emission. Energy spectra are obtained for the orbit-averaged
data set, and for the orbital phase bin around the VHE maximum.
Results. VHE -ray emission is detected with a statistical
significance of 6.4 . The data clearly show variability which is
phase-locked to the orbital period of the system. Periodicity cannot be deduced
from the H.E.S.S. data set alone. The orbit-averaged luminosity in the
TeV energy range is erg/s. A luminosity of erg/s is reached during 20% of the orbit. HE and VHE
-ray emissions are anti-correlated. LMC P3 is the most luminous
-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
Search for non-relativistic Magnetic Monopoles with IceCube
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting
of Antarctic ice. The detector can be used to search for
signatures of particle physics beyond the Standard Model. Here, we describe the
search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand
Unified Theory) era shortly after the Big Bang. These monopoles may catalyze
the decay of nucleons via the Rubakov-Callan effect with a cross section
suggested to be in the range of to
. In IceCube, the Cherenkov light from nucleon decays
along the monopole trajectory would produce a characteristic hit pattern. This
paper presents the results of an analysis of first data taken from May 2011
until May 2012 with a dedicated slow-particle trigger for DeepCore, a
subdetector of IceCube. A second analysis provides better sensitivity for the
brightest non-relativistic monopoles using data taken from May 2009 until May
2010. In both analyses no monopole signal was observed. For catalysis cross
sections of the flux of non-relativistic
GUT monopoles is constrained up to a level of at a 90% confidence level,
which is three orders of magnitude below the Parker bound. The limits assume a
dominant decay of the proton into a positron and a neutral pion. These results
improve the current best experimental limits by one to two orders of magnitude,
for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure
- âŠ