883 research outputs found
Development of Sequence Tagged Microsatellite Site (STMS) markers in Azalea
A genomic library was constructed from DNA of two azalea genotypes: a Belgian pot azalea R. simsii hybrid Mevr. Van Belle and a Chinese R. simsii from Daoxian. An enrichment of microsatellite containing sequences was performed as in Van de Wiel et al. (1999). Fragments were sequenced and primers were designed that allow the amplification of the microsatellite repeat. About 220 microsatellite containing clones were selected from the enrichment procedure. Mainly dinucleotide repeats and some trinucleotide repeats were found. The selected primers were tested in a small set of reference varieties to check their value (specificity and polymorphic rate) and to set up the PCR-conditions. Five primer pairs have been tested, two of them gave a specific and polymorphic pattern. They were further screened by radioactive PCR on a selection of 5 plants from the azalea breeders gene pool which included the two genotypes used library construction. These 2 STMS markers uniquely identified the 5 plants
Detectors for the James Webb Space Telescope Near-Infrared Spectrograph I: Readout Mode, Noise Model, and Calibration Considerations
We describe how the James Webb Space Telescope (JWST) Near-Infrared
Spectrograph's (NIRSpec's) detectors will be read out, and present a model of
how noise scales with the number of multiple non-destructive reads
sampling-up-the-ramp. We believe that this noise model, which is validated
using real and simulated test data, is applicable to most astronomical
near-infrared instruments. We describe some non-ideal behaviors that have been
observed in engineering grade NIRSpec detectors, and demonstrate that they are
unlikely to affect NIRSpec sensitivity, operations, or calibration. These
include a HAWAII-2RG reset anomaly and random telegraph noise (RTN). Using real
test data, we show that the reset anomaly is: (1) very nearly noiseless and (2)
can be easily calibrated out. Likewise, we show that large-amplitude RTN
affects only a small and fixed population of pixels. It can therefore be
tracked using standard pixel operability maps.Comment: 55 pages, 10 figure
Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO<sub>2</sub> in the seasonal ice zone
Gas diffusion through the porous microstructure of sea ice represents a pathway for ocean–atmosphere exchange and for transport of biogenic gases produced within sea ice. We report on the experimental determination of the bulk gas diffusion coefficients, D, for oxygen (O2) and sulphur hexafluoride (SF6) through columnar sea ice under constant ice thickness conditions for ice surface temperatures between -4 and -12 °C. Profiles of SF6 through the ice indicate decreasing gas concentration from the ice/water interface to the ice/air interface, with evidence for solubility partitioning between gas-filled and liquid-filled pore spaces. On average, DSF6 inline image was 1.3 × 10-4 cm2 s-1 (±40%) and DO2 was 3.9 × 10-5 cm2 s-1 (±41%). The preferential partitioning of SF6 to the gas phase, which is the dominant diffusion pathway produced the greater rate of SF6 diffusion. Comparing these estimates of D with an existing estimate of the air–sea gas transfer through leads indicates that ventilation of the mixed layer by diffusion through sea ice may be negligible, compared to air–sea gas exchange through fractures in the ice pack, even when the fraction of open water is less than 1%
Carbon dynamics of the Weddell Gyre, Southern Ocean
This is the final version of the article. Available from Wiley via the DOI in this record.The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbon measurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyre's carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058±0.010PgCyr-1 derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002±0.007PgCyr-1 (mean 1998-2011) to 0.012±0.024PgCyr-1 (mean 2008-2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived from in situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033±0.021PgCyr-1. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales.NERCEuropean Union CarboOceanCarboChang
Unusual magnetic-field dependence of partially frustrated triangular ordering in manganese tricyanomethanide
Manganese tricyanomethanide, Mn[C(CN)3]2, consists of two interpenetrating
three-dimensional rutile-like networks. In each network, the tridentate C(CN)3-
anion gives rise to superexchange interactions between the Mn2+ ions (S=5/2)
that can be mapped onto the "row model" for partially frustrated triangular
magnets. We present heat capacity measurements that reveal a phase transition
at T_N = 1.18K, indicative of magnetic ordering. The zero-field magnetically
ordered structure was solved from neutron powder diffraction data taken between
0.04 and 1.2 K. It consists of an incommensurate spiral with a temperature
independent propagation vector Q=(2Q 0 0)=(+/-0.622 0 0), where different signs
relate to the two different networks. This corresponds to (+/-0.311 +/-0.311 0)
in a quasi-hexagonal representation. The ordered moment mu=3.3mu_B is about 2/3
of the full Mn2+ moment. From the values of T_N and Q, the exchange parameters
J/k = 0.15 K and J'/J = 0.749 are estimated. The magnetic-field dependence of
the intensity of the Bragg reflection, measured for external fields
H||Q, indicates the presence of three different magnetic phases. We associate
them with the incommensurate spiral (H < 13.5 kOe), an intermediate phase (13.5
kOe 16 kOe)
proposed for related compounds. For increasing fields, Q continuously
approaches the value 1/3, corresponding to the commensurate magnetic structure
of the fully frustrated triangular lattice. This value is reached at H_c = 19
kOe. At this point, the field-dependence reverses and Q adopts a value of 0.327
at 26 kOe, the highest field applied in the experiment. Except for H_c, the
magnetic ordering is incommensurate in all three magnetic phases of
Mn[C(CN)3]2.Comment: accepted for publication in J. Phys.: Condens. Matte
Protein Pattern Formation
Protein pattern formation is essential for the spatial organization of many
intracellular processes like cell division, flagellum positioning, and
chemotaxis. A prominent example of intracellular patterns are the oscillatory
pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological
function is to ensure precise cell division. Cell polarization, a prerequisite
for processes such as stem cell differentiation and cell polarity in yeast, is
also mediated by a diffusion-reaction process. More generally, these functional
modules of cells serve as model systems for self-organization, one of the core
principles of life. Under which conditions spatio-temporal patterns emerge, and
how these patterns are regulated by biochemical and geometrical factors are
major aspects of current research. Here we review recent theoretical and
experimental advances in the field of intracellular pattern formation, focusing
on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl
Star Formation in the Central 400 pc of the Milky Way: Evidence for a Population of Massive YSOs
The central kpc of the Milky Way might be expected to differ significantly
from the rest of the Galaxy with regard to gas dynamics and the formation of
YSOs. We probe this possibility with mid-infrared observations obtained with
IRAC and MIPS on Spitzer and with MSX. We use color-color diagrams and SED fits
to explore the nature of YSO candidates (including objects with 4.5 micron
excesses possibly due to molecular emission). There is an asymmetry in the
distribution of the candidate YSOs, which tend to be found at negative Galactic
longitudes; this behavior contrasts with that of the molecular gas,
approximately 2/3 of which is at positive longitudes. The small scale height of
these objects suggests that they are within the Galactic center region and are
dynamically young. They lie between two layers of infrared dark clouds and may
have originated from these clouds. We identify new sites for this recent star
formation. The methanol masers appear to be associated with young, embedded
YSOs characterized by 4.5 micron excesses. We use the SEDs of these sources to
estimate their physical characteristics. Within the central 400x50 pc
(|l|<1.3\degr and |b|<10') the star formation rate based on the identification
of Stage I evolutionary phase of YSO candidates is about 0.14 solar mass/yr. We
suggest that a recent burst of star formation took place within the last 10^5
years. This suggestion is also consistent with estimates of star formation
rates within the last ~10^7 years showing a peak around 10^5 years ago. Lastly,
we find that the Schmidt-Kennicutt Law applies well in the central 400 pc of
the Galaxy. This implies that star formation does not appear to be dramatically
affected by the extreme physical conditions in the Galactic center region.Comment: 96 pages, ten tables, 35 figures, ApJ (in press), replaced by a
revised versio
The distribution of water in the high-mass star-forming region NGC 6334I
We present observations of twelve rotational transitions of H2O-16, H2O-18,
and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with
Herschel/HIFI as part of the guaranteed time key program Chemical HErschel
Surveys of Star forming regions (CHESS). We analyze these observations to
obtain insights into physical processes in this region.
We identify three main gas components (hot core, cold foreground, and
outflow) in NGC 6334 I and derive the physical conditions in these components.
The hot core, identified by the emission in highly excited lines, shows a
high excitation temperature of 200 K, whereas water in the foreground component
is predominantly in the ortho- and para- ground states. The abundance of water
varies between 4 10^-5 (outflow) and 10^-8 (cold foreground gas). This
variation is most likely due to the freeze-out of water molecules onto dust
grains. The H2O-18/H2O-17 abundance ratio is 3.2, which is consistent with the
O-18/O-17 ratio determined from CO isotopologues. The ortho/para ratio in water
appears to be relatively low 1.6(1) in the cold, quiescent gas, but close to
the equilibrium value of three in the warmer outflow material (2.5(0.8)).Comment: 7 pages, 3 figures, accepted by A&
The Nature of Starbursts : II. The Duration of Starbursts in Dwarf Galaxies
The starburst phenomenon can shape the evolution of the host galaxy and the
surrounding intergalactic medium. The extent of the evolutionary impact is
partly determined by the duration of the starburst, which has a direct
correlation with both the amount of stellar feedback and the development of
galactic winds, particularly for smaller mass dwarf systems. We measure the
duration of starbursts in twenty nearby, ongoing, and "fossil" starbursts in
dwarf galaxies based on the recent star formation histories derived from
resolved stellar population data obtained with the Hubble Space Telescope.
Contrary to the shorter times of 3-10 Myr often cited, the starburst durations
we measure range from 450 - 650 Myr in fifteen of the dwarf galaxies and up to
1.3 Gyr in four galaxies; these longer durations are comparable to or longer
than the dynamical timescales for each system. The same feedback from massive
stars that may quench the flickering SF does not disrupt the overall burst
event in our sample of galaxies. While five galaxies present fossil bursts,
fifteen galaxies show ongoing bursts and thus the final durations may be longer
than we report here for these systems. One galaxy shows a burst that has been
ongoing for only 20 Myr; we are likely seeing the beginning of a burst event in
this system. Using the duration of the starbursts, we calculate that the bursts
deposited 10^(53.9)-10^(57.2) ergs of energy into the interstellar medium
through stellar winds and supernovae and produced 3%-26% of the host galaxy's
mass.Comment: 28 pages, 4 figure
- …
