270 research outputs found

    Microwave photovoltage and photoresistance effects in ferromagnetic microstrips

    Full text link
    We investigate the dc electric response induced by ferromagnetic resonance in ferromagnetic Permalloy (Ni80Fe20) microstrips. The resulting magnetization precession alters the angle of the magnetization with respect to both dc and rf current. Consequently the time averaged anisotropic magnetoresistance (AMR) changes (photoresistance). At the same time the time-dependent AMR oscillation rectifies a part of the rf current and induces a dc voltage (photovoltage). A phenomenological approach to magnetoresistance is used to describe the distinct characteristics of the photoresistance and photovoltage with a consistent formalism, which is found in excellent agreement with experiments performed on in-plane magnetized ferromagnetic microstrips. Application of the microwave photovoltage effect for rf magnetic field sensing is discussed.Comment: 16 pages, 15 figure

    Radiative heat transfer between nanostructures

    Get PDF
    We simplify the formalism of Polder and Van Hove [Phys.Rev.B {\bf 4}, 3303(1971)], which was developed to calculate the heat transfer between macroscopic and nanoscale bodies of arbitrary shape, dispersive and adsorptive dielectric properties. In the non-retarded limit, at small distances between the bodies, the problem is reduced to the solution of an electrostatic problem. We apply the formalism to the study of the heat transfer between: (a) two parallel semi-infinite bodies, (b) a semi-infinite body and a spherical body, and (c) that two spherical bodies. We consider the dependence of the heat transfer on the temperature TT, the shape and the separation dd. We determine when retardation effects become important.Comment: 11 pages, 5 figure

    Dissipative Van der Waals interaction between a small particle and a metal surface

    Full text link
    We use a general theory of the fluctuating electromagnetic field to calculate the friction force acting on a small neutral particle, e.g., a physisorbed molecule, or a nanoscale object with arbitrary dispersive and absorptive dielectric properties, moving near a metal surface. We consider the dependence of the electromagnetic friction on the temperature TT, the separation dd, and discuss the role of screening, non-local and retardation effects. We find that for high resistivity materials, the dissipative van der Waals interaction can be an important mechanism of vibrational energy relaxation of physisorbed molecules, and friction for microscopic solids. Several controversial topics related to electromagnetic dissipative shear stress is considered. The problem of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure

    Theoretical Study of Fast Light with Short sech Pulses in Coherent Gain Media

    Full text link
    We investigate theoretically the phenomenon of so-called fast light in an unconventional regime, using pulses sufficiently short that relaxation effects in a gain medium can be ignored completely. We show that previously recognized gain instabilities, including superfluorescence, can be tolerated in achieving a pulse peak advance of one full peak width.Comment: 7 pages, 8 figures; Replaced with revised version accepted by JOSA

    Complementarity and Young's interference fringes from two atoms

    Get PDF
    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. Thermal motion of the atoms is included. Agreement is obtained with experiments [Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.Comment: 12 pages, including 7 EPS figures, RevTex. Submitted to Phys. Rev.

    Electromagnetic field correlations near a surface with a nonlocal optical response

    Full text link
    The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field's degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z31/z^3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas-Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour}, accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds. V. Shalaev and F. Tr\"ager

    Super-radiant light scattering from trapped Bose Einstein condensates

    Full text link
    We propose a new formulation for atomic side mode dynamics from super-radiant light scattering of trapped atoms. A detailed analysis of the recently observed super-radiant light scattering from trapped bose gases [S. Inouye {\it et al.}, Science {\bf 285}, 571 (1999)] is presented. We find that scattered light intensity can exhibit both oscillatory and exponential growth behaviors depending on densities, pump pulse characteristics, temperatures, and geometric shapes of trapped gas samples. The total photon scattering rate as well as the accompanied matter wave amplification depends explicitly on atom number fluctuations in the condensate. Our formulation allows for natural and transparent interpretations of subtle features in the MIT data, and provides numerical simulations in good agreement with all aspects of the experimental observations.Comment: 24 pages,16 figures, submitted to Phys.Rev.

    The impact of healthcare costs in the last year of life and in all life years gained on the cost-effectiveness of cancer screening

    Get PDF
    It is under debate whether healthcare costs related to death and in life years gained (LysG) due to life saving interventions should be included in economic evaluations. We estimated the impact of including these costs on cost-effectiveness of cancer screening. We obtained health insurance, home care, nursing homes, and mortality data for 2.1 million inhabitants in the Netherlands in 1998–1999. Costs related to death were approximated by the healthcare costs in the last year of life (LastYL), by cause and age of death. Costs in LYsG were estimated by calculating the healthcare costs in any life year. We calculated the change in cost-effectiveness ratios (CERs) if unrelated healthcare costs in the LastYL or in LYsG would be included. Costs in the LastYL were on average 33% higher for persons dying from cancer than from any cause. Including costs in LysG increased the CER by €4040 in women, and by €4100 in men. Of these, €660 in women, and €890 in men, were costs in the LastYL. Including unrelated healthcare costs in the LastYL or in LYsG will change the comparative cost-effectiveness of healthcare programmes. The CERs of cancer screening programmes will clearly increase, with approximately €4000. However, because of the favourable CER's, including unrelated healthcare costs will in general have limited policy implications

    Quantitative conditional quantum erasure in two-atom resonance fluorescence

    Full text link
    We present a conditional quantum eraser which erases the a priori knowledge or the predictability of the path a photon takes in a Young-type double-slit experiment with two fluorescent four-level atoms. This erasure violates a recently derived erasure relation which must be satisfied for a conventional, unconditional quantum eraser that aims to find an optimal sorting of the system into subensembles with particularly large fringe visibilities. The conditional quantum eraser employs an interaction-free, partial which-way measurement which not only sorts the system into optimal subsystems with large visibility but also selects the appropriate subsystem with the maximum possible visibility. We explain how the erasure relation can be violated under these circumstances.Comment: Revtex4, 12pages, 4 eps figures, replaced with published version, changes in Sec. 3, to appear in Physical Review
    • …
    corecore