We use a general theory of the fluctuating electromagnetic field to calculate
the friction force acting on a small neutral particle, e.g., a physisorbed
molecule, or a nanoscale object with arbitrary dispersive and absorptive
dielectric properties, moving near a metal surface. We consider the dependence
of the electromagnetic friction on the temperature T, the separation d, and
discuss the role of screening, non-local and retardation effects. We find that
for high resistivity materials, the dissipative van der Waals interaction can
be an important mechanism of vibrational energy relaxation of physisorbed
molecules, and friction for microscopic solids. Several controversial topics
related to electromagnetic dissipative shear stress is considered. The problem
of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure