Abstract

We use a general theory of the fluctuating electromagnetic field to calculate the friction force acting on a small neutral particle, e.g., a physisorbed molecule, or a nanoscale object with arbitrary dispersive and absorptive dielectric properties, moving near a metal surface. We consider the dependence of the electromagnetic friction on the temperature TT, the separation dd, and discuss the role of screening, non-local and retardation effects. We find that for high resistivity materials, the dissipative van der Waals interaction can be an important mechanism of vibrational energy relaxation of physisorbed molecules, and friction for microscopic solids. Several controversial topics related to electromagnetic dissipative shear stress is considered. The problem of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020