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Radiative heat transfer between nanostructures
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We use a general theory of the fluctuating electromagnetic field and a generalized Kirchhoff’s law~Ref. 8!
to calculate the heat transfer between macroscopic and nanoscale bodies of arbitrary shape, dispersive, and
absorptive dielectric properties. We study the heat transfer between:~a! two parallel semi-infinite bodies,~b! a
semi-infinite body and a spherical body, and~c! two spherical bodies. We consider the dependence of the heat
transfer on the temperatureT, the shape and the separationd, and discuss the role of nonlocal and retardation
effects. We find that for low-resistivity material the heat transfer is dominated by retardation effects even for
the very short separations.
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I. INTRODUCTION

It is well known that for bodies separated byd@dW
;c\/kBT the radiative heat transfer between them is
scribed by the Stefan-Bolzman law:

J5
p2kB

4

60\3c2 ~T1
42T2

4!, ~1!

whereT1 and T2 are the temperatures of solid 1 and 2, r
spectively. In this limiting case the heat transfer is connec
with traveling electromagnetic waves radiated by the bod
and does not depend on the separationd. For d,dW , the
heat transfer increases by many order of magnitude, wh
can be explained by the existence of evanescent electrom
netic field that decay exponentially into the vacuum. At t
present time there is an increasing number of investigat
of heat transfer due to evanescent waves in connection
scanning tunneling microscopy and scanning thermal
croscopy~STM! under ultrahigh vacuum conditions.1–4 STM
can be used for local heating of the surface, resulting in lo
desorption or decomposition of molecular species, and
offers further possibilities for the STM to control local chem
istry on a surface.

A general formalism for evaluating the heat transfer b
tween macroscopic bodies was proposed some years ag
Polder and Van Hove.1 Their theory is based on the gener
theory of the fluctuating electromagnetic field developed
Rytov5 and applied by Lifshitz6 for studying the conservative
part, and by Volokitin and Persson7 for studying the dissipa-
tive part of the van der Waals interaction. The formalism
Polder and Van Hove can be significantly simplified using
generalized Kirchhoff’s law.2,8 In this approach, the calcula
tion of the correlation functions for the fluctuating electr
magnetic field is reduced to finding the electromagnetic fi
created by a point dipole outside the bodies. The formal
of Polder and Van Hove requires the determination of
electromagnetic field for all space and for all position o
point dipole, and requires the integration of the product
the component of the electric and magnetic field over
volumes of two bodies. In the present paper we use a sim
formalism, which is originally due to Levin and Rytov.8 This
0163-1829/2001/63~20!/205404~11!/$20.00 63 2054
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formalism requires only the evaluation of a surface integ
over one of the bodies and is simplified further in the no
retarded limit ~small distances between bodies!, where the
calculation of the heat transfer is reduced to the problem
finding the electrostatic potential due to a point charge.
apply the formalism to the calculation of the heat trans
between:~a! two semi-infinite bodies,~b! a semi-infinite
body and a spherical particle, and~c! two spherical particles.
Problem ~a! was considered by Polder and Van Hove1

Levin, Polevoy, and Rytov,2 and more recently by Pendry.3

In comparison with other treatments, we study in detail
nonlocal and retardation effects. A striking result we find
that for low-resistivity metals retardation effects become c
cial and in fact dominate the heat transfer between bod
The problem~b! was recently studied by Pendry in a diffe
ent formalism.3 We shall point out the differences betwee
our results and those obtained by Pendry, wherever appro
ate.

II. FORMALISM

Following Polder and Van Hove,1 to calculate the fluctu-
ating electromagnetic field we use the general theory of
tov ~see Refs. 5,8!. This method is based on the introductio
of a fluctuating current density in the Maxwell equatio
~just as, for example, the introduction of a ‘‘random’’ forc
in the theory of Brownian motion of a particle!. For a mono-
chromatic field@time factor exp(2ivt)# in a dielectric, non-
magnetic medium, these equations are

“3E5 i
v

c
B, ~2!

“3H52 i
v

c
D1

4p

c
j f , ~3!

where, according to Rytov, we have introduced a fluctuat
current densityj f associated with thermal and quantum flu
tuations.E, D, H, and B are the electric and the electric
displacement field, and the magnetic and the magne
induction fields, respectively. For non-magnetic mediaB
5H and D5«E, where« is the dielectric constant of the
©2001 The American Physical Society04-1
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A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B63 205404
surrounded media. Accordingly to Rytov, the average va
of the product of components ofj f for the local optic case is
given by formula

^ j i
f~r ,v! j k

f* ~r 8,v8!&5^ j i
f~r ! j k

f* ~r 8!&vd~v2v8!,

^ j i
f~r ! j k* ~r 8!&v5A~T,v!v2 Im «~v!d~r2r 8!d ik , ~4!

A~T,v!5
\

~2p!2 S 1

2
1n~v! D , ~5!

n~v!5
1

e\v/kBT21
, ~6!

and for nonlocal optic

^ j i
f~r ! j k

f* ~r 8!&v5A~T,v!v2 Im « ik~r ,r 8,v!, ~7!

where« ik(r ,r 8,v) is a nonlocal dielectric constant. To ca
culate the correlation functions for the fluctuating elect
magnetic field, we use the theory based on the general
Kirchhoff’s law.8 For simplicity, in the derivation we will
assume local optics. However, the same derivation is v
also for the nonlocal optics case, and the final result is
same in the sense that in both cases the problem of the
transfer between two bodies is reduced to the problem
finding the electromagnetic field outside the bodies. Co
pared to Polder and Van Hove, this treatment includes n
local effects, such as the anomalous skin effect.

In order to calculate the radiative energy transfer betw
the bodies, we need the ensemble average of the Poy
vector

^S~r !&v5~c/8p!^E~r !3B* ~r !&v1c.c., ~8!

at suitable pointr . From Maxwell equations it follows tha
the electric field produced by random current densityj f , is
given by

Ei~r !5E dr 8Dik~r ,r 8,v! j k
f ~r 8!, ~9!

where functionDik(r ,r 8,v) obeys the equations

@¹ i¹k2d ik$¹
22~v/c!2%«~r !#Dk j~r ,r 8,v!

5~4pv i /c2!d i j d~r2r 8!, ~10!

@¹ j8¹k82d jk$¹822~v/c!2%«~r 8!#Dik~r ,r 8,v!

5~4pv i /c2!d i j d~r2r 8!. ~11!

The functionsDik(r ,r 8,v) have the following symmetry
properties:9

Dik~r ,r 8,v!5Dki~r 8,r ,v!. ~12!

The Poynting vector can be expressed trough the ave
products of the components of the electric field. Using E
~10! and ~11! we get
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^Ei~r !Ej* ~r 8!&v

5E dr 9A~r 9!v2 Im «~r 8!Dik~r ,r 8!D jk* ~r 8,r 9!

5
@A~T1!2A~T2!#c2

2i E dS119 $Dik~r ,r 9!

3@¹ l9D jk* ~r 8,r 9!2¹k9D jl* ~r 8,r 9!#2D jk* ~r 8,r 9!

3@¹ l9Dik~r ,r 8!2¹k9D ji ~r ,r 8!#%

24pvA~T2!ReDi j ~r ,r 8!, ~13!

where we transformed the volume integral over bodies 1
2 to a surface integral over body 1. Assume that the t
points r and r 8 lie outside the bodies. Using that forrÞr 8

Dik~r ,r 8!¹k9D jl* ~r 8,r 9!5¹k9@Dik~r ,r 8!D jl* ~r 8,r 9!#, ~14!

and performing surface integral in Eq.~13! gives

^Ei~r !Ej* ~r 8!&v

5
@A~T1!2A~T2!#c2

2i E dS19•$Dik~r ,r 9!¹9D jk* ~r 8,r 9!

2D jk* ~r 8,r 9!¹9Dik~r ,r 9!%24pvA~T2!ReDi j ~r ,r 8!.

~15!

Using the Maxwell Eq.~2! we can write the Poyting vec
tor as

^S&v5
ic2

8pv
$“8^E~r !•E8~r 8!&

2^~E~r !•“8!E* ~r 8!&2c.c.%r5r8 . ~16!

In the nonretarded limit the formalism can be simplifie
In this case, the electric field can be written as the gradien
an electrostatic potential,E(r )52¹f(r ). Thus, the total
Poynting vector becomes

~Stotal!v5
c

8p E dS•$^@E3B* #&v1c.c.%

5
iv

8p E dS•“8~^f~r !f* ~r 8!&v2c.c.!r5r8 . ~17!

In the same approximation we can write

Dik~r ,r 8!52
i

v
¹ i¹k8D~r ,r 8!,

where the functionD(r ,r 8) obeys the Poisson’s equation

DD~r ,r 8!524pd~r2r 8!. ~18!

Using the identities
4-2
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Dik~r ,r 9!@¹ l9D jk* ~r 8,r 9!2¹k9D jl* ~r 8,r 9!#

52
i

v
¹ i¹k9@D~r ,r 9!$¹ l9D jk* ~r 8,r 9!2¹k9D jl* ~r 8,r 9!%#

2
1

c2 ¹ i¹ j8D~r ,r 8!¹ l9D* ~r 8,r 9!, ~19!

formula ~13! gives

^Ei~r !Ej~r 8!&v5¹ i¹ j8^f~r !f* ~r 8!&v , ~20!

^f~r !f* ~r 8!&v

5
A~T1!2A~T2!

2i E dS19$D* ~r 8,r 9!“9D~r ,r 9!

2D~r ,r 9!“9D* ~r 8,r 9!%24pA~T2!Im D~r ,r 8!.

~21!

III. HEAT TRANSFER BETWEEN TWO FLAT SURFACES

In this section we apply the general formalism to t
problem of the heat transfer between two flat surfaces. T
problem was considered some years ago by Polder and
Hove,1 Levin, Polevoy, and Rytov,2 and more recently by
Pendry,3 who used a completely different approach. We su
pose that the half spacez,0 is filled by a medium~tempera-
ture T1! with reflection factorsR1p(q,v) and R1s(q,v) for
s- and p-polarized electromagnetic fields, respectively, a
the half spacez.d is filled by a medium~temperatureT2!
with reflection factorsR2p(q,v) and R2s(q,v), and the re-
gion between the solids, 0,z,d, is assumed to be vacuum
Let q be the component of wave-vectork5(q,p) parallel to
the surfaces and

p5AS v

c D 2

2q2. ~22!

We note that in our approach the calculation of the reflect
factors forsandp waves is considered as a separate probl
which, if necessary, can be solved by taking into acco
nonlocal effects. Using the general formulas from Sec. II a
omitting the details of calculations for the heat transfer
tween two semi-infinite bodies, separated by a vacuum
with the widthd, we obtain

Sz5
\

8p3 E
0

`

dvvE
q,v/c

d2q

3F $12uR1p~v!u2%$12uR2p~v!u2%$n1~v!2n2~v!%

u12e2ipdR1p~v!R2p~v!u2 G
1

\

2p3 E
0

`

dvvE
q.v/c

d2qe22upud

3
Im R1p~v!Im R2p~v!

u12e22upudR1p~v!R2p~v!u2

3$n1~v!2n2~v!%1@p→s#, ~23!
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where

n1~v!5~e\v/kBT121!21, ~24!

is the Bose-Einstein factor of solid1 and similarly forn2 .
The detailed distance dependence ofSz has been studied

by Polder and Van Hove within the local optics approxim
tion, and will not be repeated here. For the local optic ca
the reflection factors are determined by the well-kno
Fresnel formulas

Rip5
« i p2si

« i p1si
, Ris5

p2si

p1si
, ~25!

where« i is the complex dielectric constant for bodyi,

si5Av2

c2 « i2q2. ~26!

Figure 1~a! shows the heat transfer between two semi-infin

FIG. 1. ~a! The heat transfer flux between two semi-infini
silver bodies as a function of the separationd, one at temperature
T15273 K and another atT250 K. ~b! The same as~a! except that
we have reduced the Drude electron relaxation timet for solid 1
from a value corresponding to a mean-free-pathvFt5 l 5560 to 20
Å. ~c! The same as~a! except that we have reducedl to 3.4 Å.
4-3
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A. I. VOLOKITIN AND B. N. J. PERSSON PHYSICAL REVIEW B63 205404
silver bodies separated by the distanced and at the tempera
tures T15273 K and T250 K, respectively. Thes- and
p-wave contributions are shown separately, and thep-wave
contribution has been calculated using nonlocal optics~the
lower curve denoted by p shows the result using local
tics!. It is remarkable how important thes contribution is
even for short distances. The nonlocal optics contribution
(Sz)p , which is important only ford, l ~wherel is the elec-
tron mean-free path in the bulk!, is easy to calculate fo
free-electronlike metals. The nonlocal surface contribution
Im Rp is given by10

~ Im Rp!surf52j
v

vp

q

kF
,

wherej(q) depends on the electron-density parameterr s but
typically j(0);1. Using this expression for ImRp in Eq.
~23! gives the~surface! contribution:

Ssurf'
j2kB

4

vp
2kF

2d4\3 ~T1
42T2

4!.

Note from Fig. 1~a! that the local optics contribution toSpz
depends nearly linearly on 1/d in the distance interval stud
ied, and that this contribution is much smaller than t
s-wave contribution. Both these observations differ fro
Ref. 3, where it is stated that thes contribution can be ne
glected for small distances and that thep-wave contribution
~within local optics! is proportional to 1/d2 for small dis-
tances. However, for very high-resistivity materials, t
p-wave contribution becomes much more important, an
crossover to a 1/d2 dependence ofSpz is observed at shor
separationsd. This is illustrated in Figs. 1~b! and 1~c! which
have been calculated with the same parameters as in
1~a!, except that the electron mean-free path has been
duced froml 5560 Å ~the electron mean-free path for silve
at room temperature! to 20 Å ~roughly the electron mean
free path in lead at room temperature! @Fig. 1~b!# and 3.4 Å
~of order the lattice constant, representing the minimal p
sible mean-free path! @Fig. 1~c!#. Note that whenl decreases

FIG. 2. The thermal flux as a function of the separationd be-
tween the surfaces. One body is at zero temperature and the ot
T5273 K. With (\/t)/kBT5120 and\vp /kBT515.5.
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the p contribution to the heat transfer increases while ths
contribution decreases. Since the mean-free path canno
much smaller than the lattice constant, the result in Fig. 1~c!
represent the largest possiblep-wave contribution for normal
metals. However, thep-wave contribution may be eve
larger for other materials, e.g., semimetals, with lower car
concentration than in normal metals. This fact has alre
been pointed out by Pendry: thep-wave contribution for
short distances is expected to be maximal when the func

Im Rp'Im
«21

«11
5ImF122

v

vp
S v

vp
1

i

vpt D G21

,

is maximal with respect to variations in 1/t. This gives

vpt5
2kBT

\vp
,

where we have used that typical frequenciesv;kBT/\.
Since the dc resistivityr54p/(vp

2t) we get~at room tem-
perature! r'2p\/kBT'0.14V cm. To illustrate this case
Fig. 2 shows the thermal flux as a function of the separat
d between the surfaces when (\/t)/kBT5120 and
\vp /kBT515.5. One body is at zero temperature and
other atT5273 K.

Figure 3 shows the thermal flux as a function of the
sistivity of the solids. Again we assume that one body is
zero temperature and the other atT5273 K. The solid sur-
faces are separated byd510 Å and \vp@kBT. The heat
flux for other separations can be obtained using sca
;1/d2, which holds for high-resistivity materials. Finally
we note that thin high-resistivity coatings can drastically
crease the heat transfer between two solids. This is illustra
in Fig. 4, which shows the heat flux when thin films~;10 Å!
of high-resistivity materialr50.14V cm, are deposited on
silver. One body is at zero temperature and the other aT
5273 K. ~a! and~b! shows thep ands contributions, respec-
tively. Also shown are the heat flux when the two bodies

r at

FIG. 3. The thermal flux as a function of the resistivity of th
solids. The solid surfaces are separated byd510 Å and \vp

@kBT. The heat flux for other separations can be obtained us
scaling;1/d2 that holds for high-resistivity materials.
4-4
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RADIATIVE HEAT TRANSFER BETWEEN NANOSTRUCTURES PHYSICAL REVIEW B63 205404
made from silver, and from the high-resistivity material. It
interesting to note that while thep contribution to the hea
flux for the coated surfaces is strongly influenced by
coating, thes contribution is nearly unaffected.

IV. LOCAL HEATING OF A SURFACE BY AN STM TIP

It was pointed by Pendry3 the local heating of a surface b
an STM tip can be used for local modification of a surface
the heat transfer is sufficiently great. To investigate
power of a hot tip to heat a surface, Pendry modeled the
as a hot sphere of the same radiusR as the tip. This is a
common approximation when calculating tunneling curr
and the same arguments justify its use for calculating h
tunneling. Pendry considered the caseR!d!dW;c\/kBT
and the electrostatic limit. However, for an STM tip, an o
posite limit d!R is usually realized, and at large distanc
retardation effects can be important. In fact, it will be sho
below that the heat transfer between a sphere and surfa
the asymptotic limit~large separation! can be obtained di-
rectly from formula~23!.

Consider distancesd!dW;c\/kBT ~at T5300 K we
havedW;105 Å !. In this case we can neglect the first int
gral in Eq. ~23!, and in the second integral we can putp
' iq, and extend the integral to the wholeq plane. Using
these approximations, the second integral in Eq.~23! can be
written as

FIG. 4. The heat flux between two semi-infinite silver bod
coated with 10 Å high-resistivity (r50.14Vcm) material. Also
shown is the heat flux between two silver bodies, and two hi
resistivity bodies. One body is at zero temperature and the oth
T5273 K. ~a! and~b! show thep ands contributions, respectively
20540
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Sz5
\

p2 E
0

`

dvv@n1~v!2n2~v!#E
0

`

dqqe22qd

3H Im R1p~v!Im R2p~v!

u12e22qdR1p~v!R2p~v!u2 1@p→s#J . ~27!

Now, assume that the medium2 is sufficiently rarefied and
consists of particles with the radiusR!d, and the polariz-
ability a~v!. Then,«221→4pa2n!1, wheren is the num-
ber of particles per unit volume. Thus, whenn→0 it is
enough to include only the first-nonvanishing terms in t
expansion of the integrand of Eq.~27! in powers of«221.
The heat transfer between one particle and a surface ca
obtained as the ratio between the change of heat transfer
displacement of body2 by small distancedz, and the number
of particles in a slab with thicknessdz:

Sz52
\

p E
0

`

dvv@n1~v!2n2~v!#E
0

`

dqq2e22qd

3H 2 ImR1p~v!Im a2~v!

1S v

cqD 2

Im R1s~v!Im a2~v!J . ~28!

In the comparison with the Pendry’s calculations formu
Eq. ~28! includes thes-wave contribution that is given by th
second term.

To simplify this expression we assume thatu«(v)u@1
holds for all relevant frequencies. In the limitd
,u«u21/2dW , where« is taken at the characteristic frequen
;kBT/\, the reflection factor of thep wave becomes

R1p'
«121

«111
, Im R1p'

2 Im«1

u«1u2
. ~29!

The polarizability of the sphere is determined by

a25
«221

«212
R3, Im a2'

3 Im«2

u«2u2 . ~30!

We describe the sphere the same dielectric function as
substrate:

«~v!512
vp

2

v~v1 i /t!
, ~31!

where t is the Drude relaxation time andvp the plasma
frequency. In this case thep-wave contribution becomes

Spz'
2p3R3kB

4

5d3\3

1

~vp
2t!2 ~T1

42T2
4!. ~32!

This result is in agreement with calculations of Pendry.3 To
evaluate thes-wave contribution in the limitd,u«u21/2dW ,
we use the integral

-
at
4-5
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E
0

`

dqe22qd Im
iq2s

iq1s

'E
0

`

dq Im
iq2s

iq1s

5ImH us0ueifE
0

`

dt
t2At221

t1At221
J

5
1

2
ImH us0ueifE

2 ip/2

`

dz~e2z2e23z!J
5

2

3
us0ucos~f!,

wheres05s(q50)5(v/c)A«, us0u1/2, f5args0. Thus,

Ssz'2•102kB
11/2h29/2R3c23T11/2~vp

2t!21/2. ~33!

From the comparison~32! and ~33! the s-wave contribution
exceeds thep-wave contribution ford.(dWc/vp

2t)1/2; for
typical metals at room temperature,\vp /kBT;103 and
vpt;102 so thatd.102 Å. For dWu«u21/2,d,dW we ob-
tain

Spz'Ssz'10kB
9/2\27/2d22R3c21T9/2~vp

2t!23/2. ~34!

Assume now that the spherical particle is so close to
surface that we can neglect retardation effects. In this c
the problem is reduced to the finding of electrostatic pot
tial created by a point charge located in vacuum. Using
image theorem,11 the electrostatic potential can be written
the form

D~r ,r 8!5
1

ur2r 8u
2

«121

«111

1

ur2 r̃ 8u
1 (

m50

`

(
n5m

`

Cn
m~r 8!

3S Pn
m~cosu!

r n11 2~21!n1m
«121

«111

Pn
m~cosu i !

r i
n11 D

3cosm~f2f8!, ~35!

where we have chosen the origin of the coordinate syste
the centerO of the spherical particle, and taken the polar a
along the line connectingO with the center of ‘‘image’’
sphereO8, and assumed that the pointsr and r 8 have the
polar coordinates (r ,u,f) and (r 8,u8,f8) with respectO; r̃ 8
is the ‘‘image’’ of r 8; r i5r2h5(r i ,u i ,f) whereh is the
vector connecting the centersO and O8. h52(R1d) and
Pn

m(cosu) is the associated Legendre function~see Fig. 5!.
At any interior point of the sphere, the resultant potentia

D~r ,r 8!5 (
m50

`

(
n5m

`

An
m~r 8!r nPn

m~cosu! cosm~f2f8!,

~r ,R!. ~36!

We expand the potential~35! in spherical harmonics aroun
the centerO using the formulas12
20540
e
se
-
e

at
s

1

ur2r 8u
5 (

m50

`

(
n5m

`
r n

r 8n11

~n2m!!

~n1m!!
Pn

m~cosu!

3Pn
m~cosu8!em cosm~f2f8!, ~r ,r 8!, ~37!

1

ur2r 8u
5 (

m50

`

(
n5m

`

(
l 5m

`

~21! l 1n
r nr 8 l

hl 1n11

~ l 1n!!

~ l 1m!! ~n1m!!

3Pn
m~cosu!Pl

m~cosu8!em cosm~f2f8!,

~r ,r 8,h/2!, ~38!

~21!n1m
Pn

m~cosu i !

r i
n11

5 (
l 5m

`

~21! l 1n
r l

hn1 l 11 S l 1n
l 1mD Pl

m~cosu!, ~r ,h!,

~39!

wheree051, em52 for mÞ0. Using Eqs.~37!–~39! we can
rewrite Eq.~35! in the form

D~r ,r 8!5 (
m50

`

(
n5m

`

(
l 5m

` H r nS 1

r 8n11

~n2m!!

~n1m!!
dnl

1~21! l 1n11
«121

«111

r 8 l

hl 1n11

~ l 1n!!

~ l 1m!! ~n1m!! D
3Pn

m~cosu!Pl
m~cosu8!1Cn

m~r 8!

3F dnl

r n11 1~21! l 1n11
«121

«111

r l

hl 1n11 S l 1n
l 1mD G

3Pl
m~cosu!J em cosm~f2f8!. ~40!

Across the surface of the sphere, the Green functionD(r ,r 8)
~as a function ofr !, and its normal derivatives must be co
tinuous. These boundary conditions lead to the equation

Cn
m~r 8!5An(

l 5m

` H S 1

r 8n11

~n2m!!

~n1m!!
dnl1~21! l 1n11

3
«121

«111

r 8 l

hl 1n11

~ l 1n!!

~ l 1m!! ~n1m!! D Pl
m~cosu8!

1
«121

«111 S 2
1

hD l 1n11S n1 l
n1mDCl

m~r 8!J , ~41!

An5
~12«2!n

n«21n11
R2n11. ~42!

Outside the sphere the functionCn
m(r 8) satisfies the Laplace

equation and can be expanded as

Cn
m~r 8!5 (

l 5m

` S anl
m

r 8 l 11 1bnl
mr 8 l D Pl

m~cosu8!. ~43!
4-6
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Using Eq.~43! in Eq. ~41! and taking into account that Eq
~41! must be satisfied at arbitraryr 8 we obtain equations fo
coefficientsanl

m andbnl
m

anl
m5An (

l 85m

` H ~n2m!!

~n1m!!
dnl8d l l 81

«121

«111

3S 2
1

hD l 81n11S n1 l 8
n1mDal 8 l

m J , ~44!

bnl
m5An

«121

«111 (
l 85m

` S 2
1

hD l 81n11

3F ~ l 81n!!

~ l 81m!! ~n1m!!
d l l 81S n1 l 8

n1mDbl 8 l
m G . ~45!

If we make the replacement

anl
m5An

~n2m!!

~n1m!!
dnl1ãnl

m , ~46!

then from Eqs.~44! and ~45! we obtain

bnl
m5

ãnl
m

Al
~47!

Let us introduce the dimensionless coefficientsxnl

FIG. 5. Spherical particle~origin O! above a flat surface and it
‘‘image’’ ~origin O8!.
20540
ãnl
m5S 2

1

hD l 1n11 R1p

~n1m!! ~ l 1m!!
AnAlxnl

5~2jR!n1 l 11
R1p

~n1m!! ~ l 1m!!
lnl lxnl , ~48!

where

Rip5
« i21

« i11
,

j5(R/h), ln52An /R2n11. The coefficientsxnl obey the
equation

xnl5~n1m!! 1R1p (
l 85m

`

j2l 811l l 8

~n1 l 8!!

~ l 82m!! ~ l 81m!!
xl 8 l .

~49!

The solution of Eq.~49! can be found by iterations and ha
the form

xnl5~n1m!! 1R1p (
l 85m

`

j2l 811l l 8

~n1 l 8!! ~ l 81 l !!

~ l 82m!! ~ l 81m!!

1R1p
2 (

l 85m

`

(
l 95m

`

j2l 811j2l 911l l 8l l 9

3
~n1 l 8!! ~ l 81 l !!

~ l 82m!! ~ l 81m!!

~ l 81 l 9!! ~ l 81 l !!

~ l 92m!! ~ l 91m!!
1¯ •

~50!

Using Eqs.~44! and ~45!, formula ~40! can be significantly
simplified

D~r ,r 8!5 (
m50

`

(
l 5m

`

Cl
m~r 8!S 1

r l 11 1
r l

Al
D Pl

m~cosu!J
3em cosm~f2f8!. ~51!

Using Eq.~51! in Eq. ~21! we obtain

^f~r !f* ~r 8!&v

5
\

p
@n1~v!2n2~v!# (

m50

`

(
n5m

`

3H ~n1m!!

~n2m!!

cn
m~r !Cn*

m~r 8!

R2n11

Im ln

ulnu2 cosm~f2f8!J
24pA~T1!Im D~r ,r 8!. ~52!

Using Eq. ~52! in Eq. ~17! for the heat transfer between
sphere and a flat surface we obtain
4-7
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S5
\

p2 E
0

`

dvv@n1~v!2n2~v!#

3 (
m50

`

(
n5m

`

(
l 5m

`
jn1 l 11

~n2m!! ~ l 2m!!

3S ~n2m!Im~ x̃nn
m R1p* !dnl

2
jn1 l 11uR1pu2

~n1 l !! ~ l 1m!!
ux̃ln

mu2 Im l l D Im ln . ~53!

The above formalism gives, in principle, an exact solution
the problem in the nonretarded limit. However, ford!R,
extensive numerical calculations are necessary, becaus
this case the series converges slowly. The numerical res
will be presented elsewhere. In the present paper we o
present an approximate solution of the problem.

Using the image theorem for«@1 and for the pointsr
andr 8 close to the surface of the sphere, in the first appro
mation in the expansion of the electrostatic potential in
sum of the potentials created by the image charges we
write the potential in the form

D~r ,r 8!5
1

ur2r 8u
2R1p

1

ur2 r̃ 8u
2R2p

1

ur2r i8u

1R1pR2p

1

ur2 r̃ i8u
, ~54!

where

r i85
2R2r 8

r 8
~x8,y8,z8!,

r 85(x8,y8,2h2z8) and r̃ i85(xi8 ,yi8 ,2h2zi8). The value
of the surface integral~21! does not change if we assume th
the potential has the form~54! in all space outside a spher
Thus, using Green’s theorem we can convert the surface
tegral to a volume integral over all space outside a sph
This volume integral can be easily calculated using the
that outside a sphere the potentialD(r,r 8) obeys Poisson’s
equation with the point charges located atr5r 8, r5 r̃ 8, and
r5 r̃ i8 . Performing the calculation gives

Im^f~r !f* ~r 8!&v

5
\

2p
@n1~v!2n2~v!#ReH R1pR2p*

1

ur i82 r̃ u
2R1p* R2p

3
1

u r̃ 82r i u
1R1pR2p

1

ur 82 r̃ i u
2R1p* R2p*

1

u r̃ i82 r̃ uJ .

~55!

Using Eq. ~55! in Eq. ~17! for the heat transfer between
sphere and a flat surface we obtain
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S5
\

2p E
0

`

dvv@n1~v!2n2~v!#Im R1p~v!Im R2p~v!

3E
0

p

du
cos3 u sinu

@~2j!212cosu#2

'
p

30

R

d
s1

21s2
21\23kB

4~T1
42T2

4!, ~56!

wheres5vp
2t/4p. If we assume that in an accordance wi

Eq. ~32! every elementary volume of the sphere gives
contribution to the heat transfer

dSpz~r ,u,f!'
3kB

4

160~r 1d2r cosu!3\3

3s1
21s2

21~T1
42T2

4!dV, ~57!

then after integration of Eq.~57! over the volume of the
sphere, we obtain the result of the same order magnitud
Eq. ~56!. Because ford,R,dWu«u21/2 in the accordance
with Eq. ~33! thes contribution of the small particle does no
depend on the separationd formula ~33! is valid also for
small separationd. From the comparison of Eqs.~56! and
~33!, we get that for the sphere close to the surface,
s-wave contribution dominates for

d.1023~dWc/vp!3/2R22~vpt!23/2.

For ‘‘normal’’ metals at room temperature and forR
;103 Å the s-wave contribution dominates ford.1 Å.

V. HEATING OF A PARTICLE BY AN STM TIP

Let us now consider the heat transfer between an S
tip, which we again model by a spherical particle with radi
R2 and the polarizabilitya2(v), and a spherical particle
with radiusR1 and the polarizabilitya~v! located on a sur-
face. We consider the case of large separationd@R1 ,R2 ,
and neglect by influence of the substrate on the heat tran
At large distances, the thermal electromagnetic field radia
by particle 1 can be considered as the radiative electrom
netic field of a fluctuating point dipolepf with ensemble
average

^pi
fpk

f* &5A~T1!Im a1~v!d ik . ~58!

The electric field of this point dipole is given by

E5@3n~n•pf !2pf #S 1

r 32
ik

r 2Deik2k2@n~n•pf !2pf #
eikr

r
,

~59!

wherek5v/c and wheren is a unit vector along the axis
connecting the two particle. The rate at which a particle1
does work on a particle2 is determined by

P54E
0

`

dvv Im a2~v!^EiEi* &v ~60!
4-8
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^EiEi* &v5A~T1 ,v!Im a1~v!S 6

d6 1
2k2

d4 1
2k4

d2 D . ~61!

After absorption by particle 2 this work is converted in
heat. In the same manner we can calculate the rate of coo
of particle 2 using the same formula by reciprocity. Thus,
total heat transfer between the particles will determined

S5
\

~2p!2 E
0

`

dvv@n1~v!2n2~v!#Im a1~v!Im a2~v!

3S 6

d6
1

2k2

d4 1
2k4

d2 D . ~62!

Using for the polarizabilities of particles expression~30! we
obtain

S'102\23kB
4T1

4R1
3R2

3s1
21s2

21

3S 6

d6 12p2
1

d1W
2 d4 18p4

1

d1W
4 d2D 2@T1→T2#,

~63!

wherediW5\c/kBTi .

VI. RELATION BETWEEN HEAT TRANSFER AND
FRICTION

The heat transfer studied above is closely related to
frictional stress between bodies in relative motion, separa
by a vacuum gap. In the last years, this ‘‘vacuum’’ frictio
has attracted a great deal of attention in connection with
development of the scanning probe technique.7,10,13–16 In
Ref. 7 we show that the frictional stress between bodies h
ing flat parallel surfaces separated by a distanced and mov-
ing with velocity V relative to each other for the distanc
d!dW is determined by a formula that is very similar to E
~27!:

s5
\V

2p2 E
0

`

dvE
0

`

dqq3e22qd

3H Im R1p~v!Im R2p~v!

u12e22qdR1p~v!R2p~v!u2 S 2
]n~v!

]v D1@p→s#J ,

~64!

For d,dW«21/2, where «~v! is taken at the characteristi
frequency;kBT/\, thep-wave contribution is given by7

sp'0.3~kBT/\vp!2
1

~vpt!2

\V

d4 , ~65!

and fordW«21/2,d,dW :

sp'
9

2p2

\V

d2dW
2

kBT

\vp

1

vpt
. ~66!

For d,dW«21/2, the s-wave contributionss becomes inde-
pendent ofd:

ss'0.5p22\21c24kB
2T2t2vp

4V. ~67!
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For d.dW«21/2 we have

ss'3.88p22d22c22kB
2Ttvp

2V. ~68!

From the comparison~65! and ~67! we find thatss.sp for
d.c/vp

2t. For typical metals at room temperature this co
responds tod.1 Å. This is in drastic contrast to the~con-
servative! van der Waals interaction, where the retardati
effects become important only ford.c/vp .6 Finally, we
carry out the transition to frictional stress between a part
with the radiusR!d and semi-infinite body in Eq.~64!. To
do this, we assume as in Sec. IV that the body2 is suffi-
ciently rarefied, i.e., that the difference«221 is small. Keep-
ing only the first nonvanishing terms in the expansion of
integrand of Eq.~64! in powers of these difference, we get
formula similar to Eq.~28!:

s5
\V

p E
0

`

dvS 2
]n~v!

]v D E
0

`

dqq4e22qd

3H 2 ImR1p~v!Im a2~v!

1S v

cqD 2

Im R1s~v!Im a2~v!J . ~69!

In the limit d,u«u21/2dW the reflection factor of thep wave
is determined by Eq.~29! and in Eq.~69! thep-wave contri-
bution is reduced to the formula that was obtained by T
massone and Widom.17 For the spherical particle in this limi
we get

sp'
3

16p2

\V

d5 S kBT

\ D 2

s1
21s2

21R3, ~70!

and for u«u21/2dW,d,dW we get

sp'14p25/2
\V

d4 S kBT

\ D 5/2

s1
21/2s2

21c21R3. ~71!

For d,u«u21/2dW, ss is independent ofd:

ss'3.33102p21/2\Vs1
3/2s2

21c25R3S kBT

\ D 9/2

, ~72!

and for u«u21/2dW,d,dW we get

ss'3.54p23/2
\V

d4 S kBT

\ D 5/2

s1
21/2s2

21c21R3. ~73!

From the comparison~70! and ~72! we get thatss.sp for
0.1(cdW /s1)1/2,d,u«u21/2dW . For a normal metal at room
temperature this corresponds to 102,d,103 Å. For
u«u21/2dW,d,dW, ss'sp .

To estimates for R@d, we use the same approach as
Sec. IV. We define the frictional stress between the elem
tary volume dV and the semi-infinite body asds
5(3s/4pR3)dV, wheres is given by an expression for
spherical particle forR!d. After integration over the vol-
ume of the sphere ford!R,u«u21/2dW we get
4-9
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sp'4•1025
\V

d3 S kBT

\ D 2

s1
21s2

21R. ~74!

Because in this limitss does not depend ond, it is still
determined by Eq.~73!. From Eqs.~73! and~74! we get that
ss.sp for

d.2.4•104~cdWs1
21!5/6R22/3.

For a ‘‘normal’’ metal at room temperature andR;103 Å,
d.10 Å.

Recently, Dorofeevet al.15 have observed Brownian mo
tion of a small metal particle connected by a spring to
holder, and located in ultrahigh vacuum in the vicinity of
gold surface. It was observed that the particle performe
stochastic oscillatory motion increased as the particle
proaches the gold surface. It was suggested that this
creased damping is due to the coupling to the fluctua
electromagnetic field. From Eqs.~72! and ~74! we can esti-
mate the damping constantg/m5s/mV. For d;102 Å,
R;103 Å, m;10211210213 kg, and for ‘‘normal’’ metal at
room temperature we getgp /m;10217 s21 and gs /m
;10213 s21. However in the experiment15 g/m;102 s21.
Thus, the contribution of a fluctuating electromagnetic fie
to the damping constant cannot explain the observed exp
mental date. This result is in agreement with our ear
conclusion.14

The fluctuating electromagnetic field is an origin of t
frictional drag observed between parallel two-dimensio
electron systems.18 In the frictional drag experiments a cu
rent is drawn in the first layer, while the second layer is
open circuit. Thus, no dc current can flow in the seco
layer, but an induced electric field occurs that opposes
‘‘drag force’’ from the first layer. Recently, we used th
theory of a fluctuating electromagnetic field to calculate
frictional drag force between two-dimensional electr
systems.19 For frictional drag stress we found a formula th
is very similar to Eq.~64!. We found that for modulation-
doped semiconductor quantum wells, retardation effects
not important under typical experimental conditions, su
porting earlier calculations where retardation effects alw
r.

-
w,

,
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have been neglected.18,20 A striking result we found is that
for systems with high two-dimensional electron density, e
thin metallic films, retardation effects become crucial and
fact, dominate the frictional shear stresss.

VII. SUMMARY AND CONCLUSION

We have calculated the heat transfer between~a! two flat
surfaces,~b! a spherical particle and a flat surface, and~c!
between two spherical particles. For two flat solid surfac
we have presented numerical results for several case
practical importance, namely for two ‘‘normal’’~high-
conductivity! metals~silver!, two ~high-resistivity! semimet-
als and two silver metals coated by thin layers~10 Å! of
high-resistivity material. For high-resistivity metals, th
p-wave contribution dominates, but for ‘‘normal’’~high-
conductivity! metals we found the remarkable result that t
s-wave contribution dominates even for short separation
tween the solids. For a spherical particle and a flat surface
have considered bothd@R and d!R, where d is the
particle-surface separation andR the radius of the particle
For d!R we have obtained an exact result in the elect
static limit, and the approximate formulas that include t
retardation effects. We have pointed out the close relati
ship between the radiative heat transfer between two so
and the vacuum friction7,13 that occur when one of the solid
slide relative to the other solid. The formalism developed
this paper can be generalized to treat the vacuum fric
between bodies with curved surfaces.
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