150 research outputs found

    Competition-based model of pheromone component ratio detection in the moth

    Get PDF
    For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy

    An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury

    Get PDF
    Axons in the adult mammalian central nervous system fail to regenerate after spinal cord injury. Neurons lose their capacity to regenerate during development, but the intracellular processes underlying this loss are unclear. We found that critical components of the presynaptic active zone prevent axon regeneration in adult mice. Transcriptomic analysis combined with live-cell imaging revealed that adult primary sensory neurons downregulate molecular constituents of the synapse as they acquire the ability to rapidly grow their axons. Pharmacogenetic reduction of neuronal excitability stimulated axon regeneration after adult spinal cord injury. Genetic gain- and loss-of-function experiments uncovered that essential synaptic vesicle priming proteins of the presynaptic active zone, but not clostridial-toxin-sensitive VAMP-family SNARE proteins, inhibit axon regeneration. Systemic administration of Baclofen reduced voltage-dependent Ca2+ influx in primary sensory neurons and promoted their regeneration after spinal cord injury. These findings indicate that functional presynaptic active zones constitute a major barrier to axon regeneration

    Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements

    Full text link
    Large quantity of residual biomass with possible energy and industrial end can be obtained from management operations of urban forests. The profitability of exploiting this resource is conditioned by the amount of existing biomass within urban community ecosystems. Prior research pointed out that residual biomass from Platanus hispanica and other tree species can be calculated from dendrometric parameters. In this study, two approaches have been analyzed: First, applicability of TLS was tested for residual biomass calculation from crown volume. In addition, traditional models for residual biomass prediction were developed from dendrometric parameters (tree height, crown diameter, and diameter at breast height). Next, a comparison between parameters obtained with both methodologies (standard methodologies vs TLS) was carried out. The results indicate a strong relationship (R2 = 0.906) between crown diameters and between total tree heights (R2 = 0.868). The crown volumes extracted from the TLS point cloud were calculated by 4 different methods: convex hull; convex hull by slices of 5 cm height in the XY plane; triangulation by XY flat sections, and voxel modeling. The highest accuracy was found when the voxel method was used for pruned biomass prediction (R2 = 0.731). The results revealed the potential of TLS data to determine dendrometric parameters and biomass yielded from pruning quitar of urban forestsFernández-Sarría, A.; Velázquez Martí, B.; Sajdak, M.; Martinez, L.; Estornell Cremades, J. (2013). Residual biomass calculation from individual tree architecture using terrestrial laser scanner and ground-level measurements. Computers and Electronics in Agriculture. 93:90-97. doi:10.1016/j.compag.2013.01.012S90979

    Lead-DBS v3.0: Mapping Deep Brain Stimulation Effects to Local Anatomy and Global Networks.

    Get PDF
    Following its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool. The aim of the present manuscript is to introduce fundamental additions to the Lead-DBS pipeline including a deformation warpfield editor and novel algorithms for electrode localization. Furthermore, we introduce a total of three comprehensive tools to map DBS effects to local, tract- and brain network-levels. These updates are demonstrated using a single patient example (for subject-level analysis), as well as a retrospective cohort of 51 Parkinson's disease patients who underwent DBS of the subthalamic nucleus (for group-level analysis). Their applicability is further demonstrated by comparing the various methodological choices and the amount of explained variance in clinical outcomes across analysis streams. Finally, based on an increasing need to standardize folder and file naming specifications across research groups in neuroscience, we introduce the brain imaging data structure (BIDS) derivative standard for Lead-DBS. Thus, this multi-institutional collaborative effort represents an important stage in the evolution of a comprehensive, open-source pipeline for DBS imaging and connectomics

    Different methodologies for calculating crown volume of Platanus hispanica trees by terrestial laser scanner and comparison with classical dendrometric measurements

    Full text link
    Terrestrial laser scanners (TLSs) are used in forestry and fruit culture applications to perform a threedimensional geometrical characterization of trees and so make it easier to develop management systems based on that information. In addition, this data can improve the accuracy of dendrometric variable estimations, such as crown volume, obtained by standard methods. The main objective of this paper is to compare classical methods for crown volume estimation with the volumes obtained from the processing of point clouds obtained using a terrestrial laser scanner (TLS) on urban Platanus hispanica trees. This will allow faster quantification of residual biomass from pruning and therefore an improved management in future. The methods applied using TLS data were also evaluated in terms of processing speed. A set of 30 specimens were selected and their main dendrometric parameters (such as diameter breast height, crown diameter, total height, and distance from the crown base to the soil) were manually measured using classical methods. From these dendrometric parameters, the apparent crown volumes were calculated using three geometric models: cone, hemisphere, and paraboloid. Simultaneously, these trees were scanned with a Leica ScanStation2. A laser point cloud was registered for each tree and processed to obtain the crown volumes. Four processing methods were analyzed: (a) convex hull (an irregular polyhedral surface formed by triangles that surround the crown) applied to the whole point cloud that forms the crown; (b) convex hull using slices of 10 cm in height from the top to the base of the crown; (c) XY triangulation in horizontal sections; and (d) voxel discretization. All the obtained volumes (derived from classical methods and TLS) were assessed and compared. The regression equations that compare the volumes obtained by dendrometry and those derived from TLS data showed coefficients of determination (R2) greater than 0.78. The highest R2 (0.89) was obtained in the comparison between the volume calculated using a paraboloid and flat sections, which was also the fastest method. These results show the potential of TLS for predicting the crown volumes of urban trees, such as P. hispanica, to help improve their management, especially the quantification of residual biomass.The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation in the framework of the Project AGL2010-15334 and by the Generalitat Valenciana in the framework of the Project GV/2012/003.Fernández-Sarría, A.; Martínez, L.; Velázquez Martí, B.; Sajdak, M.; Estornell Cremades, J.; Recio Recio, JA. (2013). Different methodologies for calculating crown volume of Platanus hispanica trees by terrestial laser scanner and comparison with classical dendrometric measurements. Computers and Electronics in Agriculture. 90(1):176-185. https://doi.org/10.1016/j.compag.2012.09.017S17618590

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF
    • …
    corecore