110 research outputs found
Primate modularity and evolution: first anatomical network analysis of primate head and neck musculoskeletal system
Network theory is increasingly being used to study morphological modularity and integration. Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological organization of anatomical structures and providing an operational way to compare structural integration and modularity. Here we apply AnNA for the first time to study the macroevolution of the musculoskeletal system of the head and neck in primates and their closest living relatives, paying special attention to the evolution of structures associated with facial and vocal communication. We show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids consistently have asymmetrical facial modules that include structures of both sides, a change likely related to the ability to display more complex, asymmetrical facial expressions. However, no clear trends in network organization were found regarding the evolution of structures related to speech. Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal structures – in human evolution led to a decrease in network density and complexity in humans
Chronic protein restriction in mice impacts placental function and maternal body weight before fetal growth
Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.Instituto de Genética VeterinariaFacultad de Ciencias Naturales y Muse
Recommended from our members
Trabecular Bone in the Bird Knee Responds with High Sensitivity to Changes in Load Orientation
Wolff’s law of trajectorial orientation proposes that trabecular struts align with the orientation of dominant compressive loads within a joint. Although widely considered in skeletal biology, Wolff’s law has never been experimentally tested while controlling for ontogenetic stage, activity level, and species differences, all factors that may affect trabecular bone growth. Here we report an experimental test of Wolff’s law using a within-species design in age-matched subjects experiencing physiologically normal levels of bone strain. Two age-matched groups of juvenile guinea fowl Numida meleagris ran on a treadmill set at either 0° (Level group) or 20° (Incline group), for 10·min per day over a 45-day treatment period. Birds running on the 20° inclined treadmill used more-flexed knees than those in the Level group at midstance (the point of peak ground reaction force). This difference in joint posture enabled us to test the sensitivity of trabecular alignment to altered load orientation in the knee. Using a new radon transform-based method for measuring trabecular orientation, our analysis shows that the fine trabecular bone in the distal femur has a high degree of correspondence between changes in joint angle and trabecular orientation. The sensitivity of this response supports the prediction that trabecular bone adapts dynamically to the orientation of
peak compressive forces.Anthropolog
A landmark-free morphometrics pipeline for high-resolution phenotyping: application to a mouse model of Down syndrome
Characterising phenotypes often requires quantification of anatomical shape. Quantitative shape comparison (morphometrics) traditionally uses manually located landmarks and is limited by landmark number and operator accuracy. Here, we apply a landmark-free method to characterise the craniofacial skeletal phenotype of the Dp1Tyb mouse model of Down syndrome and a population of the Diversity Outbred (DO) mouse model, comparing it with a landmark-based approach. We identified cranial dysmorphologies in Dp1Tyb mice, especially smaller size and brachycephaly (front-back shortening), homologous to the human phenotype. Shape variation in the DO mice was partly attributable to allometry (size-dependent shape variation) and sexual dimorphism. The landmark-free method performed as well as, or better than, the landmark-based method but was less labour-intensive, required less user training and, uniquely, enabled fine mapping of local differences as planar expansion or shrinkage. Its higher resolution pinpointed reductions in interior mid-snout structures and occipital bones in both the models that were not otherwise apparent. We propose that this landmark-free pipeline could make morphometrics widely accessible beyond its traditional niches in zoology and palaeontology, especially in characterising developmental mutant phenotypes
A Single Basis for Developmental Buffering of Drosophila Wing Shape
The nature of developmental buffering processes has been debated extensively, based on both theoretical reasoning and empirical studies. In particular, controversy has focused on the question of whether distinct processes are responsible for canalization, the buffering against environmental or genetic variation, and for developmental stability, the buffering against random variation intrinsic in developmental processes. Here, we address this question for the size and shape of Drosophila melanogaster wings in an experimental design with extensively replicated and fully controlled genotypes. The amounts of variation among individuals and of fluctuating asymmetry differ markedly among genotypes, demonstrating a clear genetic basis for size and shape variability. For wing shape, there is a high correlation between the amounts of variation among individuals and fluctuating asymmetry, which indicates a correspondence between the two types of buffering. Likewise, the multivariate patterns of shape variation among individuals and of fluctuating asymmetry show a close association. For wing size, however, the amounts of individual variation and fluctuating asymmetry are not correlated. There was a significant link between the amounts of variation between wing size and shape, more so for fluctuating asymmetry than for variation among individuals. Overall, these experiments indicate a considerable degree of shared control of individual variation and fluctuating asymmetry, although it appears to differ between traits
Chronic protein restriction in mice impacts placental function and maternal body weight before fetal growth
Mechanisms of resource allocation are essential for maternal and fetal survival, particularly when the availability of nutrients is limited. We investigated the responses of feto-placental development to maternal chronic protein malnutrition to test the hypothesis that maternal low protein diet produces differential growth restriction of placental and fetal tissues, and adaptive changes in the placenta that may mitigate impacts on fetal growth. C57BL/6J female mice were fed either a low-protein diet (6% protein) or control isocaloric diet (20% protein). On embryonic days E10.5, 17.5 and 18.5 tissue samples were prepared for morphometric, histological and quantitative RT-PCR analyses, which included markers of trophoblast cell subtypes. Potential endocrine adaptations were assessed by the expression of Prolactin-related hormone genes. In the low protein group, placenta weight was significantly lower at E10.5, followed by reduction of maternal weight at E17.5, while the fetuses became significantly lighter no earlier than at E18.5. Fetal head at E18.5 in the low protein group, though smaller than controls, was larger than expected for body size. The relative size and shape of the cranial vault and the flexion of the cranial base was affected by E17.5 and more severely by E18.5. The junctional zone, a placenta layer rich in endocrine and energy storing glycogen cells, was smaller in low protein placentas as well as the expression of Pcdh12, a marker of glycogen trophoblast cells. Placental hormone gene Prl3a1 was altered in response to low protein diet: expression was elevated at E17.5 when fetuses were still growing normally, but dropped sharply by E18.5 in parallel with the slowing of fetal growth. This model suggests that nutrients are preferentially allocated to sustain fetal and brain growth and suggests the placenta as a nutrient sensor in early gestation with a role in mitigating impacts of poor maternal nutrition on fetal growth.Instituto de Genética VeterinariaFacultad de Ciencias Naturales y Muse
Building generic anatomical models using virtual model cutting and iterative registration
Article deposited according to publisher policy posted on SHERPA/RoMEO, 30/07/2010.YesFunding provided by the Open Access Authors Fund
Body mass estimation from footprint size in hominins.
Although many studies relating stature to foot length have been carried out, the relationship between foot size and body mass remains poorly understood. Here we investigate this relationship in 193 adult and 50 juvenile habitually unshod/minimally shod individuals from five different populations-Machiguenga, Daasanach, Pumé, Hadzabe, and Samoans-varying greatly in body size and shape. Body mass is highly correlated with foot size, and can be predicted from foot area (maximum length × breadth) in the combined sample with an average error of about 10%. However, comparisons among populations indicate that body shape, as represented by the body mass index (BMI), has a significant effect on foot size proportions, with higher BMI samples exhibiting relatively smaller feet. Thus, we also derive equations for estimating body mass from both foot size and BMI, with BMI in footprint samples taken as an average value for a taxon or population, estimated independently from skeletal remains. Techniques are also developed for estimating body mass in juveniles, who have relatively larger feet than adults, and for converting between foot and footprint size. Sample applications are given for five Pliocene through Holocene hominin footprint samples from Laetoli (Australopithecus afarensis), Ileret (probable Homo erectus), Happisburgh (possible Homo antecessor), Le Rozel (archaic Homo sapiens), and Barcin Höyük (H. sapiens). Body mass estimates for Homo footprint samples appear reasonable when compared to skeletal estimates for related samples. However, estimates for the Laetoli footprint sample using the new formulae appear to be too high when compared to skeletal estimates for A. afarensis. Based on the proportions of A.L. 288-1, this is apparently a result of relatively large feet in this taxon. A different method using a ratio between body mass and foot area in A.L. 288-1 provides estimates more concordant with skeletal estimates and should be used for A. afarensis
Developmental pathways inferred from modularity, morphological integration and fluctuating asymmetry patterns in the human face
Facial asymmetries are usually measured and interpreted as proxies to developmental noise. However, analyses focused on its developmental and genetic architecture are scarce. To advance on this topic, studies based on a comprehensive and simultaneous analysis of modularity, morphological integration and facial asymmetries including both phenotypic and genomic information are needed. Here we explore several modularity hypotheses on a sample of Latin American mestizos, in order to test if modularity and integration patterns difer across several genomic ancestry backgrounds. To do so, 4104 individuals were analyzed using 3D photogrammetry reconstructions and a set of 34 facial landmarks placed on each individual. We found a pattern of modularity and integration that is conserved across sub-samples difering in their genomic ancestry background. Specifcally, a signal of modularity based on functional demands and organization of the face is regularly observed across the whole sample. Our results shed more light on previous evidence obtained from Genome Wide Association Studies performed on the same samples, indicating the action of diferent genomic regions contributing to the expression of the nose and mouth facial phenotypes. Our results also indicate that large samples including phenotypic and genomic metadata enable a better understanding of the developmental and genetic architecture of craniofacial phenotypes
- …